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Abstract i
A model for the formation and evolution of three-dimensional sedimentary structures

such as longshore sand ridges, on the continental shelf in water deeper than that of the

shoaling region, is proposed. The model is based on the interaction between surficial or

internal weakly nonlinear shallow water waves having weak span-wise \patial dependence

and the bottom topography.

While these ridges are not the result of a single formative agent, it is argued that the

mechanism proposed in this study does contribute significantly to their generation and

evolution. Testing the hypothesis, however, is as difficult as formulating it. Comparisons

of this model with oceanographic data must wait for sufficient data to become available.

In conjunction with developing the sand ridge model, this study proposes a new math-

ematical equation, properties of which are explored here in some detail. This equation

potentially applies to other physical processes and raises questions which are themselves

good avenues for further research.

The numerical implementation of the model combines fixed point methods with finite

difference techniques, resulting in a scheme which is found to be superior to conventional

finite difference techniques in economy of computational resources and speed. Details of

the scheme's inner workings and its performance are included.
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Chapter 1

Introduction

1.1 Statement of the Problem

The dynamics of sand ridges, which are a common feature of the Continental Shelf,

are poorly understood. Sand ridges are underwater bar-like features composed of loose

granular sediment. Hundreds of meters long and up to a few meters high sand ridges arc

usually found in groups, arranged in more or less parallel rows separated from each other

by hundreds of meters. They may be loosely classified as either tidal ridges or longshore

sand ridges. Tidal ridges are oriented parallel to the prevailing direction of the local ocean

currents, whereas longshore sand ridges are oriented normal to the direction in which

the overlying water waves propagate. In thii study I propose a possible mechanism for

the formation and evolution of longshore sand ridges.

The model presented here follows from work initiated by Boczar-Karakie.vicz and

Bona, which dates to 1986. In [11 they conjecture that longshore sand ridges are the

result of energetic interactiuis between shallow water waves and the underlying bottom

topography, and propose a simple model, which in [2] was shown to be in qualitative

agreement with oceanic data. While the present study owes much to the previous work.

it improves upon it considerblv and in several ways. In addition to extending the two-

dimensional model to three dimensions, this work contributes to an understanding of
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the general behavior and mathematical structure of both the two- and three-dimensional

model. The model is free of adjustable parameters and. at this stage. intentionally crude.

Our motivation was to present the simplest possible formulation in order to effectively

study and test the hypothesis unhindered by physically negfigible effects. We do not

claim that sand ridge formation is the result of a single event or agent, nor do we claim

that this model rules out all other explanations for the phenomenon. Rather. we describe

a likely mechanism for the formation and evolution of these structures, i mechanism we

believe must play a significant role.

A great deal of work on the problems of sedimentation has been done: however, par-

ticularly since the middle of this century, most of the work has been directed towards

understanding smaller-scale aspects of sediment motion, rather than the formation and

evolution of sedimentary structures. For a comprehensive review of the present level of

our understanding of sedimentation, the reader is referred to Sleath [3]. While consid-

erable progress has been made, our current understanding of sediment dynamics and,

especially, of sedimentary structure formation is far from complete. The emphasis in this

dissertation will be on the fluid mechanical aspects of sedimentation. We believe that a

great deal of progress in understanding sediment movement in a fluid environment can

be achieved by determining first what sort of patterns che fluid is able to generate.

The plan of the dissertation is as follows. In this introduction, we discuss the rele-

vance of the study, describe the morphology of oceanic sedimentary structures, comment

on observational and laboratory work, and review the various sedimentation and sand-

bar models. In Chapter 2, we consider the main hydrodyn; iiical issues for the cases of

both surface and internal waves. Chapter 3 deals with the boundary-layer problem and

with the development of a mass transport equation driven by the nonlinear wave motion.
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Chapter 4 presents analytical results pertinent to the new equations resulting from the

hydrodynamic problem discussed in Chapter 2. Chapter 5 presents the numerical solu

tion of the full system, along with an analysis and evaluation of the numerical scheme.

Numerical examples are presented anC qualitatively discussed in Chapter C Chapter 7

fists conclusions and open questions worthy of future pursuit. Two appendices provide

details on the higher order theory.

1.2 Relevance of This Study

For many, celebrating the beauty and mystery of nature is sufficient reason for studying

the patterns and structures by which nature organizes and evolves. Nevertheless. there

are also very practical reasons for research into sedimentary structures, some of which

are listed below:

"* The study and control of coastal erosion is of major economic. political, and eco-

logical importance to communities that neighbor oceans and major lakes.

"* Most features of the ocean bottom evolve in geological time scales; sedimentary

structures, however, change comparatively quickly. A model of sedimentary struc-

ture evolution and movement will help us understand how these quickly evolving

features will modify the bottom topography over time scales relevant for such things

as navigation.

D Understanding the movement of these structures may help biologists discern how

nutrients and organic materials migrate along the ocean bottom, information es-

sential to understanding the dynamics of the marine habitat.

* Similarly, such knowledge may shed fight on the movement and eventual fate of

man-made pollutants and debris.
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"* Alternatively, the sedimentary structures themselves may have economic and social

importance. The best surfing beaches have naturally occurring sandbars strategi-

cally located to concentrate the action of water waves in some areas and destroy it

in others. Predictability of these so-called "hot spots" is essential to the welfare of

the surfing community.

"* Sand ridges are part of hydrocarbon reservoirs in ancient strata. Predicting their

properties and evolution would be useful in petroleum exploration.

"* The storm-wave devastation of coastal communities and offshore structures could,

in principle, be significantly ameliorated by the construction of lightweight sandbar-

like structures, which could be "tuned" to the most damaging waves, thus damping

them considerably. This technique would replace the present heavy and very ex-

pensive barrier walls, which may impinge harmfully on the natural balance in the

environment.

"* The above-mentioned resonant effect may also be used to produce the opposite

effect: the bar-like structures could act as a lens, concentrating the power of the

most energetic waves into a small region and thus increasing the efficiency of water-

wave driven electric generators.

"* The approach taken to understand the formation and evolution of sand ridges may

be applicable in some degree to other structures in nature that are the result of

fundamentally nonlinear interactions, such as cloud patterns and sand dunes.

1.3 Morphology of Oceanic Sedimentary Structures

Not that long ago it was thought that sand ripples, like those found in the beach zone, and

their larger cousins the sand ridges, were morphologically similar. We now recognize a



variety of different sedimentary structures, defining the categCries by shape or generating

mechanism. Examples are sand ripples, ridge-runnel systems. tidal ridges, longshore

sand ridges. The formation and maintenance of these sedimentary structures is not well

understood.

In the near-beach zone. including the breaker zone. occur small sand ripples, on

the order of a few centimeters high, which come in a multitude of shapes and forms.

Larger structures, such as crescentic bars, occur as well. In this region the fluid flow is

quite complex, since there are both incident and reflected waves, tidal flow effects, and

turbulence from wave breaking.

The ridge-runnel system, so common in the near-beach zones in the American North-

east and in the Great Lakes [4], is comprised of a large bump 3 to 15 meters away from

the beach, about 0.3 meters high and up to perhaps 7 to 10 meters in length, which is

preceeded by a runnel. The runnel may or may not be scoured with small ripples. The

system is thought to be formed by storms eroding the beach and the dune fields and/or

by tidal currents [4]. Davis et al. [4] provide observational evidence for their claim that

storms seem to play a minor role in the evolution of these structures once they have

formed.

Tidal ridges, which were noticed by Off [5], are rhythmic features oriented parallel

to the direction of tidal currents. They are 8 to 30 meters high, 7 to 60 kilometers

long, and separated by I to 10 kilometers. Allen [6] found that their height is roughly

proportional to the square root of their spacing. and that they are composed of sand, silt,

and mud. He reported that they occur where tidal currents reach at least 1 to 5 knots

and where there is an ample supply of sediment. Tidal ridges are also very prominent in

the neighborhood of river deltas. Tidal ridges may have a fairly flat dome, suggesting to

some researchers that erosion effects play a very minor role.
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Sandbars are distributed in complicated patterns on the continental shelf, and it is

sometimes difficult to discern which is a tidal ridge and which is a longshore sand ridge.

the object of attention in this study. For example, Figure 1.1, taken from a paper by

Swift [7], shows the relative orientation of different types of ridges. Note that some bars

fan out around river deltas, while some are oriented parallel or almost normal to the

coast.

I" " - -" - ....
- . . •• • A%•\

.4A.-

- .. UN . - - _.- . \,
-. - - - • : , ' ,. .- 2W•Y ,.24sh • ¢i

.•= -- " 2

Figure 1.1: Submerged ridge field from Long Island to Florida, from Swift [7].

Longshore sand ridges are common features of the continental shelf in water deeper

than the surf zone, from the near-shore region to the farthest reaches of the shelf. The

better-known ridge fields are those found in the shallowest end of this range, primarily

because they are readily seen, as is illustrated in Figure 1.2, which shows the bar system

off central Harrison County, Mississippi. Other near-shore systems are found along the



coasts of the Carofinab. Florida. the northern coast of Alaska. in the Black Sea. the Baltic

Sea, and even in large lakes such as Lake Michigan. Longshore sand ridges can be found

in the farthest reaches of the shelf hugging every continent around the world as well.

From observations there seems to be a mean gradient, in the neighborhood of 0.02 to

0.05. which favors the formation of longshore sand ridges [8]. The ridges are composed

mostly of fine sand and silt, sometimes of mud. The mean sediment particle size ranges

between 0.1 and 0.5 millimeters. As shown in Figure 1.3, the ridges are typically a few

Figure 1.2: Sand ridges in shallow water, Harrison County, Mississippi.

meters high and are spaced hundreds of meters from each other. Groups of up to 12

ridges have been seen, mostly parallel to each other. Their migration rates vary from

place to place; for instance, the ridges on Sable Island Bank have been estimated to

move at rates ranging from 0.5 meters per year, in water 60 meters deep, to 5 meters



per year, in 30-meter depths [9]. The ridge fields are routinely found in regions where

the water depth is small compared to the wavelength of surface waves with frequencies

in the infra-gravity range [10].

A!/. no

M*~Is
n. C

0 10 Iio I 0( 160C

Figure 1.3: Cross Section. Sand ridges off the coast of Northern Alaska. Almost half of

the 1350 Km. long coast share such morphology. From Short [10].

1.4 Comments on Field and Laboratory Observations

In addition to the inherent difficulties of conducting laboratory experiments involving

liquid/sediment media (such as leveling the sediment bed after each trial, extracting gas

bubbles and contaminants, etc.), laboratory experiments that purport to model oceanic

phenomena are difficult to interpret since, in most cases, oceanic phenomena do not
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scale well to laboratory conditions. Field observations are also quite challenging. The

environment can be quite hostile, time scales are long, and spatial scales are large.

It was not until the mid-1940s that exploration into the deeper parts of the conti-

nental shelf was even considered. In the '60s and '70s a great deal of field observations

were made on :and structures of all sorts. Nevertheless, ridge fields have just begun to

be investigated in a systematic way. Our expertise with signal processing, telemetry. and

acoustical and radio wave remote sensing have only recently been upgraded to the point

where large scale or long term experiments are now possible [11]. Although acoustical

wave remote sensing has been shown to be the best way to probe the ocean environment,

we lack the concerted effort that would be required to produce large-scale acoustic array

measurements that would enable time-dependent data gathering of the bottom topogra-

phy and fluid motion. It is no surprise, then, that very few complete data sets of ridge

fields exist in the open literature at present. In addition, what is meant by a 'complete"

data set hab o'en changing over the years. In our study, a complete data set would

include bathimetric records, as well as surface or internal wave directional spectra taken

over the course of years.

What do experiments suggest about sedimentary transport in an oceanic environ-

ment? In the case of laboratory experiments with sand ripples, theory seems to qualita-

tively agree with experiments for a rather limited regime of flow and time spans. Some of

the most carefully conducted sand-ripple experiments are those of Boczar-Karakiewicz,

Benjamin, and Pritchard [12]. However, Pritchard [13] has stated that, based on his

as-yet unpublished results, with an erodible bed in a standing wave tank, a wave field

can show very long periods of homogeneous activity with little discernible movement of

the bottom. Then, at an unpredictable moment, if all is right, the waves can grow to

the point of breaking. A great deal of turbulence is seen in the boundary layer, the bed
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suffers a very quick rearrangement. and the wave field returns to little activity. Pritchard

did not measure all of the fluid parameters in the water column or in the suspended sed-

iment. In his opinion, insofar as sand ripples in the near-shore zone are concerned, wave

breaking is an extremely important source of sediment structure formation.

Is wave breaking essential to the generation of sand ridges" Ripples can be form'ied in

a laboratory tank by a non-breaking wave field. Sand ridges, as was mentioned earlier.

appear in regions where no breaking waves occur. Most models for the near- or far-

shore zones, like the one which will be presented here, do not apply to the breaker zone.

While breaking is an excellent source of turbulence, we do not know how it controls the

dynamics of sediment and of the underlying sand structures. Nevertheless, wave breaking

away from the breaker region has been seen to have the following effects: Lau and Travis

[8] found that sandbars beyond the breaker zone do not disappear, but simply change

location after a severe storm. Short, in his field observations in Northern Alaska [10],

found that severe storms seem to rework the bars, but that some sandbars photographed

in 1949 and 1955 were still identifiable after approximately 30 years. Preliminary data

from the so-called "Super Duck" [11] experiments (purported to be the most conclusive

measurement enterprise) show this bar -reworking"; we are waiting for the release of

these data.

There are two main differences in the near and far ends of the continental shelf insofar

as the fluid environment is concerned. First, in the near-shore we can identify strong

incident and reflected components to the wave field. Second. as the (nonlinear) waves

shoal some of the energy in the lower frequencies will shift to higher frequencies. Not

only is there significant asymmetry in the velocity field. there can be quite pronounced

asymmetry in the acceleration field. Bijker et al. [14] made laboratory measurements of

acceleration and velocity fields for water waves with fairly high Stokes numbers, in the
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order of 12-57. They found the net transport to be in the direction of the wave, particu-

larly if the wave was very nonlinear. Smaller particles seemed to be transported mostly

by the Stokes flow, whereas larger particles responded mostly to the -acceleration" field.

Hallermeier [15] analysed a large experimental data set and found an empirical rule for

the prediction of ripple characteristics based on the acceleration field, which suggests that

this field may be an important sand-transport mechanism in the near-beach zone. Elgar

et al. (16] made measurements in the shoaling region. in water depths in the range of 1-6

meters, over a topography with mean slope of 5 %. which confirmed the existence of the

velocity and acceleration field asymmetry. They found that the acceleration asymmetry

becomes increasingly significant with decreasing water depth. The above investigations

suggest that the acceleration field becomes ever more important as the distance to the

beach decreases: our model would not apply in this area. since the transport equation

we use does not include acceleration effects.

1.5 Sedimentation Transport Models

As mentioned previously, much of the work on sedimentation has been designed to under-

,stand how the sediment moves, rather than how it generates patterns. Most researchers

working on sedimentation transport assume an outer fluid flow at the edge of a bound-

ary layer, and attempt to model sediment motion on the bed and in the layer. Sleath

presents a good review of the subject; we will summarize, therefore, only in a cursory

manner the different sedimentation models.

A model developed by Bagnold [17,18] assumed that wave-induced oscillatory water

motion causes sediment to move back and forth with a net expenditure of energy. Al-

though no net transport results in such an oscillatory flow. the energy dissipation acts to
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keep the sediment in suspension. Once in suspension. any steady current superimposed

on this oscillatory flow will then cause a net transport of the suspended sediment in the

direction of the instantaneous total bottom stress. Originally a bed load model. Bag-

nold's model is also applied to suspended load transport for low Froude number tlows.

A threshold of motion parameter. called the Shield's parameter. is incorporated into the

model to reflect the fact that a critical amount of energy must be imparted on the bed

before transport can occur. Smith [19] and Fredsce [20] applied this model to the ocean

environment. They assumed a constant eddy viscosity and obtained criteria for the on-

set of instability and ripple formation. Richards [21] used instead a turbulent scale that

increases linearly in height from the bed. thus obtaining two modes of instability, which

yield small- and large-scale ripples respectively. Bagnold's model has also been used with

some success in the near-shore zone, in a version which includes the effect of wind on

sediment transport rate [221. However. Bailard and Inman [18] found that the model did

not perform adequately when the waves are not normally incident to the beach.

Another sedimentation model by Raudkivi [23]. and by Williams and Kemp [24].

attributes the formation of ripples to a chance piling of sediment. This deformation

then causes the flow to separate. with subsequent building up of the ripple downstream.

They attribute the initial small deformation to the random action of highly turbulent

velocities, or "bursts", close to the bed.

Lastly we mention the model in Longuett-Higgins' seminal paper [25]. He shows

how a second order drift velocity, which was first noted by Stokes [26]. develops in the

boundary layer from an outer oscillatory flow or in the bulk of the fluid through the action

of nonlinear waves. This drift velocity is capable of transporting sediment, particularly

suspended sediment. A number of people have studied this mechanism; of note are

Johns [27], who developed explicit expressions appropriate for the ocean environment
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and studied the character of 'he drift velocity and its stability, and Blondeaux [28] and

Vittori and Blondeaux [29], who looked at the stability and formation for Froude numbers

at which flow separation does not occur. They determined adequate height, spacing, and

onset thresholds, as compared to laboratory experiments. The second of these papers

introduced more structure and made a case for the inclusion of nonlinear effects.

In our study we adopt this last model. The mean slopes in those regions of principal

interest here are very low, hence down-slope giavitational transport. which is important

in the coastal environment, plays a negligible role in this model. The ratio of bar height

to separation is very much below the critical value of 0.1. As noted by Sleath [3], values

above 0.1 usually lead to boundary layer separation behind the crests of the bars, and

vortex formation takes place. When this occurs vortex ripples will spread over the entire

bed.

1.6 Sedimentary Bar Models

Among the researchers who have coupled a sedimentation transport model to an oceanic

wave field to look at the process of bar formation in the oceanic environment are Holman

and Bowen [30]. They use the linear three-dimensional water wave equations to compute

drift velocity, which in turn they substitute in Bagnold's transport model for suspended

load. In particular, they examine the edge wave case in an effort to compute the formation

of crescentic bars in the shoaling region. Bowen [31] has also examined the performance

of his model in predicting the spacing of longshore ridges and reports good qualitative

agreement with field observations.

As mentioned earlier in connection with Pritchard's work [12], laboratory and field

observations indicate that standing wave patterns display a Bragg resonance process

with an underlying wavy bottom. In the steady-state, the ripples develop a spacing
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that is roughly half the local average length of the water waves. This theory [12.32-34-

is applicable in the near-shore environment, since it relies on the scouring effect of a

standing wave pattern. This first order theory is the one most widely studied, since it is

most easily implemented in the laboratory: at one or another time, researchers impficated

this mechanism in the generation of all sandbars.

The ridge and runnel system has been modeled using a variant of Bagnold's transport

formula by Dean [22] and deVriend [3.5]. The extent of their success, however, is hard to

discern from their publications. Since the undertow and the local bed slope are significant

and since the effect of the wind in generating stresses on the surface of the ocean must

be taken into account, modeling the formation of runnels is difficult. Russell and Osorio

[36], Bijker et al. [37] found that on a sloping beach, the mass transport velocity near

the bed was onshore before breaking and offshore after. This effect, independent of wave

reflection from the beach, may explain why these bar systems are usually found close to

the plunge line of breakers.

Huthnance [38] develops a theory for the formation of tidal ridges, based on an

instability which is triggered by a small protuberance on the shelf. The ensuing boundary

layer develops a bar that is fed by bedload. The resulting steady-state bar is finite in

extent and parallel to the always present currents. Equilibrium is reached when the

supply of sand is exhausted. Huthnance notes that the tops of these ridges are flat rather

than rounded, which he claims dismisses erosion as being the source for the generation

of these structures. Erosion should not be dismissed, however, since these bars appear

close to river deltas and, possibly, as features of older beaches. Huthnance's study does

not address the periodic nature of these bars and does not suggest a relation between

their height and spacing.

Theories for the formation of the longshore sand ridges, which are the subject of this
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study, will be briefly reviewed in the following section.

1.7 Proposed Model

1.7.1 Historical Development

Among the first to suggest that infragravity standing waves may be responsible for sand

ridge formation was Suhaida [39]. He did so at a time when few people saw anything

fundamentally different about near-shore sandbars, where a strong standing wave field is

present, and bars or ridges far from the beach, where tittle or no standing wave pattern

is to be found. Short [10] made field measurements of sand ridges in Alaska. He found a

loose correlation between the ridge spacing and the average peak infragravity component

wavelenth.

Lau and Travis [8] derived a drift velocity from a Stokes water wave field for a bed

with constant slope. They were able to estimate the spacing and the number of ridges

from the periodicity of the drift velocity. They made use of the SRIT (slightly reso-

nant interacting triads) approximation developed by Lau and Barcilon [40] and Mei and

Uinliiata [321 for weakly nonlinear shallow water waves to solve approximately for the

wave motion. They made some comparisons with field data to examine the adequacy of

their theory in predicting the observed bar separation distances.

Boczar-Karakiewicz brought this problem to the attention of Bona while the latter

was visiting Poland in the early 1980s. Eventually, their collaboration resulted in the

Boczar-Karakiewicz, Bona, Cohen paper [1], in which they use the ideas of Lau and Bar-

cilon to obtain the resulting drift velocity in a boundary layer and use this drift velocity

as a source of sediment motion in a traiisport equation. Exploiting the discrepancy of

the time scales between fluid and sediment dynamics. they were able to formulate the

first truly evolutionary sand ridge models. Their model is appropriate for the shallower
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end of the continental shelf, since it was derived for an isotropic water environment.

Later, the model was extended to the internal wave case and was tested against actual

field data (2]. Encouraged by the results of the field data comparisons, it was thought

that the natural extension of this ongoing research project should be to increase the

model's applicability to three dimensions. The result is the present study. Bona and

this author are currently pursuing some of the more theoretical iosues in the project.

while Boczar-Karakiewicz is testing the models against field data and is investigating

possible practical improvements to the model, such as the use of more realistic transport

equations and the addition of more phenomenology, so that the model might prove useful

to the engineering community.

1.7.2 Brief Description of the Model

Referring to Figure 1.4, we envision infra-gravity waves coming into the purview of the

model at the line x = 0, which is set. on the deep side, by the point at which the long

waves "feel" the bottom topography. The shoreward direction. x, increases as the wave

travels shoreward. The span-wise direction, given by y, is approximately parallel to the

line of constant phase of the incoming waves. The waves propagate shoreward. possibly

at an angle with respect to the prevailing direction of maximum gradient of the bottom

topography. In the deeper reaches of the shelf, the waves would be supported by the

picnocline, while in the isotropic water column, the waves would be on the ocean surface.

The extent of the model is limited in the longshore direction by the disintegration of the

interface supporting the internal waves, by the approach to the breaking zone, by any

singularity in the depth, and by significant energy transfer from low to high frequencies.

The span-wise direction is limited by the same sort of issues. Taking advantage of

the disparate time scales for bottom and fluid evolution, the assumed gently sloping

bottom will be considered to appear as a fixed but non-uniform surface to the waves
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as they progress and eventually dissipate on the shore. This assumption enables us to

decouple the problem: starting with some initial bottom configuration. we solve the

hydrodynamics that evolve in time t and find the drift velocity in the boundary layer;

the resultant drift velocity is then used in a transport equation to update the bottom

topography, which is evolving in time scale T. which is considerably longer than t.

Figure 1.4: Aereal view of the problem.

1.7.3 General Comments

A few comments must be made as far as the general mechanism for longshore ripple

and sand ridge formation is concerned. If a standing wave pattern exists in the surface

waves, linear or nonlinear, the scouring effect of the waves generates ripples obeying a

Bragg scattering mechanism. This is a first-order phenomenon. Its ability to influence

the shape of the bottom topography relies on the existence of both a reflected and an

incident wave. As we move further seaward, the reflected component may become weaker

and weaker. Yet, we find large-scale bars. In this region it is suggested that the Bragg
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mechanism gives way to the second-order. strictly nonlinear theory that we present in

this study. Thus, we envision that both mechanisms operate along the continental shelf,

but in the near-shore the first order theory is prevalent, while in the deeper reaches the

second-order theory prevails.

The second order theory does not have to be strictly unidirectional. However, for

very mild slopes and large distances from the shore, the reflected component is pre-

sumably very weak. Hence, if the bottom is not restricted in this way, as compared

with spatial changes in the surface waves, the reflected component provides a great deal

more structure. For the surface wave case the reflected component is still significant

close to the shoaling region (which is the extreme end of the purview of this model);

!he waves are assumed, in the unidirectional case, to dissipate sufficiently so that the

reflected component is negligible. For internal waves, the issue of dissipation is relatively

more straightforward: As the density stratification collapses in the shallower reaches of

the shelf, the water column is no longer able to support an internal wave. Incidentally,

Boczar-Karakiewicz et al. [2] have found that the area in which stratification collapses

agrees with the limit to which sand ridge fields appear.

The frequency range in this model is limited by assumptions of shallow water wave

theory, i.e., long wavelengths compared to the local water column depth. For surface

waves, the periods range from 0.5 minute to 0.5 hour, and energies in the order of

102 - 105 J/m 2 . For internal waves, the range is on the order of minutes to an hour in

the period, and energies as high as 106J/m 2. The frequency range is infra-gravitational

for both the surface and internal waves.

Internal waves in the above-mentioned frequency range are caused by such things as

the action of tidal forces on the stratified fluid flow in places in which a sudden height

change in the bottom topography occurs, such as that at the edge of the continental
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shelf. For surface waves, on the other hand, the generating mechanism is less obvious: a

distant storm, long-fetch wind effects, or tidal forces. No provision is made in the model

for external forcing, such as by the wind. This restriction basically limits the frequency

range of the surface case to very long waves. However, some of the longer waves are

only observed in the farther reaches of the shelf, in areas where the assumptions of an

isotropic water column are hardly realistic. In these areas, internal waves take over.

The equation which models the surface waves in this study is a highly truncated modal

expansion of the Boussinesq system. In principle, howc -r, there is no reason why the

actual Boussinesq system itself could not be used. Elgar and his collaborators [411 have

examined the issue of the recurrence of solutions to the modally truncated Boussinesq

Equation numerically in the Stokes parameter regime of 0(1). They found that the

two-mode case, which will be used in this study, displays recurrence-like solutions over

a great many wavelengths of distance. As the number of modes is increased, they find

that the recurrence is confined to fewer and fewer cycles the more modes are used. In

addition they find that initially very narrow spectra undergo more recurrence-like cycles,

before the spectra flatten, than do initially broad-banded spectra. Their conclusion is

that recurrence-like solutions are an artifice of a severely truncated modal expansion of

the Boussinesq Equation.

As is mentioned in their paper, other researchers have studied the issue of recur-

rence of solutions in such equations as the Nonlinear Schr6dinger Equation (NLSE)

and the Zakharov Equation (ZE), which share the common feature with the Boussinesq

Equation that they all undergo 0(1) energetic transfers between their modes over large

times/distances. Caponi and his collaborators [42] found numerically that in the ZE.

depending on the initial conditions. the solutions were either "periodic, recurring, tran-

sitional, or chaotic." In connection with the NLSE. Weideman et al. f43] found that
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solutions may be recurrent or chaotic, depending on the particular structure of the dis-

cretization used in its numerical solution and on the number of degrees of freedom. If the

discretization preserves Hamiltonian structure, the orbits are homocinic. Otherwise, if

Hamiltonian structure is not preserved, for a few degrees of freedom the discrete NLSE

behaves entirely differently than in the continuous case. As the number of degrees of

freedom is increased, the solutions to the discrete and continuous NLSE converge, as

does the Hamiltonian structure.

In conclusion, then, if Elgar and his co-workers' findings prove correct (we are

presently addressing this issue in a separate study). we may be modeling the water

waves in this study incorrectly. However, the observations of Elgar et al. do not weaken

in any way our conjecture that weakly nonlinear shallow water waves are responsible for

the formation and evolution of sand ridges. After all, there is more than ample obser-

vational evidence that these nonlinear waves travel over very vast spans of ocean. i.e..

that their spectra recurs a great many times before they lose their coherent shape, over

regions where sa, 1 ridges are a prominent feature of the ocean floor. Certainly, their

findings do not square well with the recurrence-like solutions that internal waves are

known to possess over very large spatial scales. Their research, if verifiable, leads us to

conclude either that there is something inherently wrong with the modal expansions of

the Boussinesq Equation as models for these types of waves or, more interestingly, that

their findings, along with those of Caponi's and Weideman's groups, are pointing out

that something as yet not understood but rather fundamental, is awaiting discovery in

connection with discretizations of nonlinear evolution equations of the type discussed.

There is still another possibility: It could be that the loss of coherence after a few recur-

rent cycles, in certain situations. is responsible for the interesting fine structure observed

in actual sand ridge fields.



Chapter 2

The Hydrodynamics of the
Water-Wave Problem

2.1 Preliminaries

Owing to the striking similarity of the typical bar spacing to the length scale at which

energetic interactions amriong the most significant modes of shallow water waves takes

place, we believe that longshore sand ridges are formed by flows in the boundary layer

which are generated by these weakly-nonlinear long water waves. We refer to these waves

as "shallow water waves" because their wavelength is considerably greater than the local

depth of the water column on which they propagate. An appropriate description for

these waves is given by the Boussinesq System [44].

In this section, starting from mass and momentum conservation, the equations for

long weakly-nonlinear water waves are derived, detailing along the way the assumptions

and approximations relevant to the oceanic environment.

2.1.1 Conservation of Mass and Momentum

Consider a function p(r.t) defined in a time dependent set Qt C 120, representing the

density of the fluid in such a way that the total mass of the fluid body m(Qo) is equal to

J p(r, t)d 3 r. (2.1)

21
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and is constant. If this invariance holds it follows, presuming that both the density p

and the velocity u are E C1 (ft), that

DtJ i p(r.t)d3 r = JQ(Dtp+ pV • u)d'r, (2.2)

where the time derivative is the convective derivative, and we are making use of the

divergence theorem and Leibniz" integration rule. If this invariance applies in every

subdomain of the fluid body, then

Dtp + pV • u = dtp + V • (pu). (2.3)

When it is assumed that the density of the fluid element does not change (although

it may different for different fluid elements), the above simplifies to

V • u. (2.4)

and we say that the fluid is -incompressible". Note that incompressibility is not a prop-

erty of the fluid, but rather of the motion. It amounts to assuming that the volume is

preserved, i.e. its flow is in conditions of constant volume. Equation (2.4) applies to the

case considered in this study.

Momentum is conserved as well. Conservation of linear momentum asserts that

Dt k., pud3 r = fk pfd3 r + O. R nd2 r. (2.5)

where n is the outward normal on 0%t. f encompasses all bodily forces. such as gravity.

coriolis, etc.. and the contribution of contact forces enters the balance through the stress

tensor N. Expressed in another way, momentum conservation asserts that

Dt k pud3 r = j/I. pfd3
r + kf, V•Ndd3 r. (2.6)
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It is convenient to express Nj. with i and j running from 1 to 3 in this instance, as the

sum of an isotropic part --pij, having the same form as the stress tensor in a fluid at rest.

and a remaining "'deviatoric" part d,, contributing to the tangential stresses. The tensor

di, has the distinctive property of being due entirely to the existence of the motion of the

fluid. Furthermore, the deviatoric tensor may be recast in terms of physically amenable

terms. Assume that d2j is linearly proportional to velocity gradients. -,o that the stress

tensor is now N,, = -ph,, +±24 (t j -t ,ijis/ 3 ), p representing the pressure (which iii a fluid

in motion is not related to the variables of state in equilibrium thermodynamics), and

the deviatoric stress tensor separated into pure straining motion and expansion, which

are respectively the second and third terms of the above expression.

In almost all oceanic circumstances the fluid may be regarded as a constant density.

Newtonian, and isotropic fluid. Thus. eij= et,, and momentum conservation leads to

the Navier-Stokes equations

Du, Op 0
pf, - -- + -{2pe, - eibj/3)} (2.7)

where

2 au, 09xS= -( -+ )(28

is the rate-of-strain tensor, and p is the viscosity of the fluid, which is a constant of pro-

portionality between the rate of shear and the tangential force per unit area when .,lane

layers of fluid slide over each other. The viscosity is a strictly positive quantity, reflecting

the common observation that the force between layers of fluid in relative sliding motion is

always a frictional force resisting the relative motion. The typical value of ' for water at

100C is roughly 1.3.10- 2g/crn/,sc. and it decreases at about 3% per degree centigrade

rise in temperature in the neighborhood of normal temperatures. When appreciable

temperature differences exist in the flow field, u must be considered spatially dependent.
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However, in the oceanic setting under consideration, such temperature differences are

not present and the viscosity is safely assumed constant. Adopting such a condition.

and incorporating the incompressible condition, conservation of linear momentum in the

bulk of the ocean is expressed as

Du

p-D = pf - Vp+ pV 2u. (2.9)

Viscous terms can be very important in narrow regions of flow. or in very small scale

motions, where the significant velocity changes are confined to small distances, such as is

the case in the so-called boundary layers at the air-water interface and in the fluid system

immediately above the bottom topography. Consideration is first given, however, to the

effect of viscosity away from both boundary layers in order to arrive at the appropriate

equations of conservation in the bulk of the oceanic fluid.

Given that it is the fluid is isotropic and of constant density p. take A, the wave-

length of the water waves, to be typical of the length of appreciable spatial variation in

the motion or magnitude of the velocity u. Thus, the ratio 7Z = pAiul/,i, which is an

appropriate Reynolds number for this situation, gives an estimate of the relative magni-

tudes of the inertial forces as a ratio to the viscous forces involved. For long wavelength

waves, Jul may be replaced by the more accessible velocity measure ,A, where w is the

frequency of these waves. In this case the Reynolds number K =_ pWA 2 /ji emphasizes the

fact that acceleration in the fluid is proportional to frequency. The size of )? is quite large

in the body of the oceanic fluid, reflecting the fact that the motion is almost entirely

governed by inertial forces. Therefore. for fluid motion which is dominated by inertial

forces. momentum conservation may be approximated by

Du
P-t = pf- Vp (2.10)
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to reflect such balance in the bulk of the fluid. Boundary layers form on the air-water

interface, and the water-bottom interface. The boundary layer at the water-bottom in-

terface produces significant losses even in the ideal situation considered here. We shall

reserve the discussion of the bottom boundary layer for a later chapter. however. Tile

attenuation due to dissipative losses in the air-water Interface can be estimated by the

following argument: Since the tangential stresses at the surface are zero. and the normal

stress proportional to the surface tension, the losses due to viscous effects, typified by tile

magnitude of v p= l/p. are small compared to the inertial forces, that is, the Reynolds

number 1Z = ,-;K 2 /V is large and hence, the vortical flow may be neglected. For typical

long oceanic waves, JZ - 106 - 108. Thus, the wave decay is found to be proportional to

exp(-2vK2 t) from the conditions imposed on the tangential and normal stresses at tile

surface, where n is the wavenumber of the waves. For the typical case, the -e-folding'"

distance is in the order of years. This simple result is, of course, only true for a, perfectly

clean and wind-free interface, which generally is not the situation in the real ocean envi-

ronment. When the surface is contaminated, the free surface boundary condition is more

appropriately modelled by an elastic, or dynamic no-slip condition, and in that instance

the dissipation is not trivial. Additionally. even if the surface was clean, the energetic

interactions between strong wind and the waves usually overwhelm the internal frictional

forces just discussed.

The contributions of coriolis, surface tension, wind, and gravitational forces are now

briefly examined. With the exception of surface tension forces, the forces just mentioned

enter the momentum balance as terms on the right-hand side of Equation (2.10). The

role of surface tension is not borne out of conventional momentum balances in the bulk

of the fluid, but rather, as an ad-hoc condition to be satisfied at the air-water interface.



26

The apparent body forces on a fluid element with coordinates at rest relative to a

rotating earth with approximately constant angular velocity Q are

- 2Q x u - Q x (Q x u). (2.11)

where the second term is known as the centripetal force and the first term as the coriolis

force. A measure of the relative size of the inertial forces to the coriolis force for long water

waves is given by U(/LQ. which is known as the Rossby number. Here U is representative

of the velocity, L is a characteristic length, and Q2 : 7.3.10- 5sec- 1. When the Rossby

number is greater than unity, the coriolis force is negligible as compared to inertial forces.

For long waves the Rossby number may be estimated by the ratio •/Q, and this ratio is

close to unity for planetary waves. Thus. coriolis forces would not play a significant role

in this study, since the wave periods for the waves under consideration range between

fractions of a minute and an hour -the infra-gravitational spectrum. The centripetal

force may be absorbed into the pressure term in the Euler equation, i.e. Equation (2.10),

or safely neglected since the magnitude of the inertial forces to it is O(w/Q 2 ).

Continuity of stresses at the air-water interface dictate that the pressure on the two

sides of the surface can differ only as a result of surface tension since ideally the surface

has zero mass. The force's origin lies in the fact that for any sufficiently small reversible

isothermal change in the system, the total work done is proportional to the gains in the

total Helmholtz free energy [45]. The molecular origin of surface tension evidently lies in

the intermolecular cohesive forces. The magnitude of this surface tension is proportional

to the local interface curvature. Following Batchelor [45], for long waves the pressure at

the interface is regarded as constant. The condition for equilibrium, with z the height

above the zero level reference pressure is

1 1
pgz - I( - + W-) = constant, (2.12)

R, R 2
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where R1 and R 2 are the radii of curvature on the air side. The constant - is the

surface tension constant, which for pure water at 15"C is about 74dyn/cm. The relevant

parameter which reflects the relative size of this force is vl/pg. For pure water, the

value is about 0.27cm, which is the length scale on which effects of surface tension are

likely to be comparable to the effects of gravity. Since infra-gravitational waves have

length scales man)y times larger than 0.27cm, surface tension effects may be neglected.

The wind is a major source of energy in the surface-wave case. The water wave

spectrum considered in this study' spans waves with periods as long as tens of minutes

and as short as fractions of a minute, depending on the water depth. The longest ones

are generated by earth movements, distant storms and other powerful meteorological

phenomena, but it is quite clear that the most important forcing source, for waves in the

high end of the frequency range of the model, or equivalently, in the shallower end of the

shelf, is the wind.

Modelling the interaction of the wind with the ocean surface is, at present. far from

satisfactory. Nevertheless, two complementary mechanisms for the generation and main-

tenance of waves by the wind have been proposed. Philtip's resonance model [46] pro-

poses that if the pressure fluctuations of the wind are in phase with the surface waves,

a resonant interaction is expected with ensuing wave growth. It is said to govern the

initial stages of wave generation, and it ignores the interaction between the surface-wave

and the actual air flow. i.e. it considers the direct action of turbulent fluctuations in

aerodynamic pressure. A complementary theory is the shear-flow theory worked out by

Miles [47], which governs the "instability" phase. In this theory there is a transfer of

momentum from the wind to the water waves through Reynold stresses at the boundary

layer with ensuing wave growth.

In this study it shall be assumed that the wave field was created outside of the
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model's region of applicability. This is admittedly a gross simplification in the surface-

wave -version of the model, but again, at this exploratory stage of the model, consideration

of the effect of the wind takes us far from more immediate issues.

2.2 Surface Wave Problem

By -hydrodynamic problem" we shall mean the problem in the domain that excludes

the boundary layer that hugs the bottom. As we shall explain later. we shall exploit

the tr, iendous discrepancy between the time scales of the fluid motion, represented

by t, and the time scales of the bottom evolution given by T. The latter time scale

is to be considered a parameter in what follows. As illustrated in Figure 2.1. one may

define the domain for the hydrodynamic problem as Q = R2 x [-H(T) + 6, q(t)] ;

R2 x [-H(T), i1(t)], since 6 < I H I. The fluid is subjected solely to gravitational forcing.

The velocity field is given by (u. w), where the first entry is the transverse velocity and

w is the vertical velocity. Position is represented by the vector (r, z). The free surface

is given by z = r7(r,t) and the bottom by s = -H(r,T). We adopt the convention

throughout this study, that the operator V3  V + k'O.

It is postulated that the fluid is initially irrotational. That is,

V3 x (u.w)= 0. (2.13)

The curl of Equation (2.10) yields what is commonly referred to as the Helmholtz equa-

tion:
0a-V3 x (u,w)+ V 3 x (V 3 x (u, w) x (u, w)) = 0, (2.14)

making use of the fact that the force field is conservative. Appealing to Equation (2.13).

and using the vector identity V 3 X V 3 x (u, w) = -(u, w) X V 3 x (u, w), it is seen that

D
-f,(V3 x (u.w)) = V:3 x (u. w)'.V3(u~w). ('2.15)
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Figure 2.1: Side view, surface wave problem.

Since V3 x (u, w) = 0 is a possible solution of this equation, it follows that if the flow is

initiatly irrotational, it shall remain as such for all time.

Since the fluid motion is irrotational. the velocity may be expressed as the gradient

of a scalar potential p:

(u, u') = V3Q. (2.16)

From conservation of mass. Equation (2.4), the equation of motion within the fluid is

A30 = 0. in Q. (2.17)

At the air-water interface, conservation of momentum requires the pressure to be

continuous. The assumed constant value of the pressure immediately above the water is

set to zero. Hence, the pressure at the interface when the surface is quiescent shall be



30

zero. This dynamical boundary condition then specifically states that

= -2 IV 3 012 - g77, at z = 77. (2.18)

The bottom, which is assumed impermeable, has a normal velocity that agrees with

that of the fluid. Thus,

(p = -VH.VO, at z = -H. (2.19)

Lastly, the kinematic condition on the air-water interface, that fluid particles on the

surface shall remain there for all time, may be expressed as

Oz = r7t + V¢.Vi7, at z = q7. (2.20)

Equations (2.17)-(2.20) with the additional requirement that I V46I - 0 as I rI --c

comprise the hydrodynamic problem.

Wave-like solutions of the above boundary value problem can easily be derived if the

waves are infinitessimal in amplitude. Solutions of the form exp{i(K.r - w(K)t)} exist

for the linearized version of the system, provided that the relation between the frequency

w and the wavenumber K is the "dispersion relation"

w2 = grtanh(KH), (2.21)

where . K I1, and it is understood that the dispersion is spacially dependent since

H = H(r, T). Both K and w must be real if we are strictly interested in plane wave

solutions.
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2.2.1 Hamiltonian Formulation of the Hydrodynamic Problem

To obtain a Hamiltonian formulation of the hydrodynamic problem proposed above, it

is noted that the motion of the entire fluid body will be determined once the free surface

motion is known. Specifically, if the function 77 which describes the free surface, and the

velocity potential at the free surface,

,t E O(r,z = t(2.22)

are known, then, for each t, 77 determines the domain QT and -t determines the cor-

responding 0, which is the unique solution to the hydrodynamic problem comprised

of Equation (2.17) through Equation (2.20) and Equation (2.22), with the additional

assumption that IV301 -* 0, as Irl - oo. In what follows, we rely heavily on ideas

developed by Zakharov [48], Miles [49], Bowman' [50] and especially Benjamin' [51,52].

Consider the Hamiltonian E = E(r7 , 4). The choice of label E reflects the fact that

the Hamiltonian for this problem is conserved and is numerically equal to the sum of the

potential energy V, and the the kinetic energy K. As shown by Benjamin and Olver [52],

the requirement that E be stationary with respect to independent variations of 65$ and

677 yields the following Hamiltonian system:

bE
'rt = -

4pt - ifE (2.23)

where the derivatives are Giteaux derivatives. 3

IS. Bowman has unfortunately left science and is now an actuarian in England. He leaves behind
some good work, some of it unpublished.

2 Not to be out done by particle theorists, Benjamin has been -successfully so far- working on unifying
fluid dynamics under a consistent mathematical framework. A possible name for his framework could be
Super Hamiltonian Unified Theory.

3The first variation of the functional F in the direction r is defined here by "F(r + 6i)-=o- rtF,
where f is the Eulerian derivative.
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To briefly demonstrate the equivalence of the Hamiltonian system and the hydrody-

namic problem consider the following: The energy in the system is

E =T+V= Jd2Jr I IV3 '32dz-+ Jd2r1g72 (2.24)

R 2 -H R2

exactly. Extremizing E, keeping 4 constant and considering variations 6bj,

E= /I d12=, + gq}, (2.25)

R2

which leads to Equation (2.18). Next, keeping 7 constant and considering variations b6b,

using Equation (2.17), and applying Green's theorem,

6E = dEsb-P(E 8)hE .VOI E, + f (2.26)

where ft is the outward normal to the boundaries. Since dE, = V' + (Vrl)2d2r, and

dEB = 1/1 + (VH)d 2 r, the boundary contributions to Equation (2.26) are

f d2rb4'{4o - V17Vk)12=,, (2.27)

R2

which leads to Equation (2.20), and

J d2r rb{q5O + VH-V }I=_,H, (2.28)
R2

which implies Equation (2.19).

2.2.2 Development of the Boussinesq System

The Hamiltonian System, Equation (2.23), shaH be specialized for the case of weakly

nonlinear shallow water waves. Define the parameters a < 1, and 3 <« 1, their precise

meaning, in terms of physically relevant parameters, shall be made clear subsequently.
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Assume that O(a) ,-' 0(032), and take H = 0(1), VH = O(a). 77 = O(a), -t = O(a).

Further, consider the differentiations 8, Ot. V = 0(03).

An approximation to 0, which satisfies the boundary value problem is

0(r,z,t) = qb(r,t) - 1z 2 V 2 4)(r,t) - zV.(HV4D(r,t))

0(a) 0(a032) O(a)32)

which can be easily derived using Rayleigh's trick4 [53]. The gradient of the above

expression

U(r, z, t) = u(r, t) - {zV[V.(Hu(r, t))] + 1z 2V(V.u(r, t))} (2.29)
2

gives the v-locity anywhere in the inviscid domain of the fluid.

The potential energy is exactly

V= J d2r g292. (2.30)
R 2

The kinetic energy will be calculated using the approximation developed above for the

velocity potential developed above, Equation (2.29):

K= f d2r{l(H + i7 )(V$) 2 + H(VH.V$)2 - -f-(V2$)2}, (2.31)
R 2

which is an expression of 0(a 3/3 2 ), and 0(a 2/,34 ).

Thus, in terms of the velocity at the surface u = Vt, and the displacement, the

energy is

E = V + KO + aK 1 +- , (2.32)

'The trick was first used in connection with the solution of the electrostatic field in an axisymmetric
strip, unbounded in x, say, and bounded by smooth but spatially varying edges in y. The harmonic
functions W and 0 representing the potential and the streim function are expanded as • = cos(yo98)f,
and to = sin(yap)f, where f is determined termwise in the - ansion in terms of the boundary conditions.
Thanks are due to Prof. T. B. Benjamin for showing me this trick, and for introducing me to all matters
Hamiltonian.
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where

K o = J d2rlHu2 (2.33)

R
2

7711 + H (VH -U -2--(V-u)2 }, (2.34)
R 2

and V is as before. Substituting E in Equation (2.23), to lowest order, yields the wave

equation

77t + V-(Hu) = 0 (2.35)

ut + gVI = 0. (2.36)

To the next order,

,7t + V.[(H + 77)u) + V-[uV(H 2 ).VH + 1V(H33 V-u)] = 0 (2.37)

ut + (u.V)u + gV77 = 0, (2.38)

a version of a Boussinesq System [44]. The Boussinesq System (BSS) is a shallow water-

long-wavelength- weakly nonlinear approximation to the Euler Equation which admits bi-

directional waves as solutions. The version given by Equation (2.37) and Equation (2.38).

however, has a couple of troublesome characteristics from the standpoint of modelling

a physical situation. Namely, the system is linearly unstable, and secondly, it is rather

poor in conveying accurately the full dispersion relation.

The first problem may be seen as follows: without loss of generality, consider the one-

dimensional version of BBS, dropping all nonlinear terms, setting g = 1, and considering,

for simplicity, the case of a uniformly flat bottom. Additionally, let fi(K, t) be the Fourier

transform in space of u(x, t). Cross differentiating and combining Equation (2.37) and
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Equation (2.38), the resulting equation is

1
Utt - ux- r = 0, (2.39)

or equivalently,

fsu(n) = (-K + -)t , (2.40)
3

for which a solution is

S ,1 1
ft(x,t) = u(n.,o){Aexp( -K4 - n2t) + Bexp(- -n' - K

2t)}. (2.41)
3 3

It is then immediately obvious that the solution can grow c exp(V45K2t). The second

problem is that the dispersion relation satisfied by Equation (2.39),

2 _ K2 (1 - 1K 2 ) = 0 (2.42)

is an adequate approximation to the Equation (2.21) strictly for very low frequencies as

shall be demonstrated graphically in a subsequent section.

2.2.3 Regularization and Scaling

An ad-hoc procedure which "regularizes" BBS shall enable us to proceed in our devel-

opment. As an alternative model to the Korteweg-deVries equation (KdV), Peregrine

[54] developed an equation which has eventually been referred to as the "Regularized

Long Wave Equation". While Peregrine was the first to propose it as an alternative to

the KdV, it was Benjamin, Bona, Mahony [551 who later, but independently, proposed a

regularized version of KdV, with the express intention of overcoming some of its short-

comings in modelling water waves, and who studied the resulting model's properties.

The trick is to use the lowest order continuity and momentum balances in the higher

order dispersive terms in order to obtain an equation which is more amenable to physical

and computational studies. This procedure is justified on the grounds that the error in
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making the substitution into the dispersive term, which is a higher order term, shall be

no worse than the error already present in the original system. We shall employ a similar

technique here, exploiting the specific form of the bottom topography, being careful not

to destroy the bi-directional nature of the wave solutions.

Using Equation (2.36), and the fact that VH = O(E). approximate

V.[uV(H 2).VH + 1v(H3V.u)] = _ V.[V(H 2 77t)] + O(aE). (2.43)
33

Thus, the regularized system (RB) adopted in this study, as an approximate model for

the water waves, is

irt + V.[(H + 77)u] - 1V.[V(H2it)] = 0 (2.44)
3

Ut + (u.V)u + gVr7= 0. (2.45)

Several comments are in order. First of all, the dispersion relation of RB is

K2

L&I=20K (2.46)
1 + 51K2 

(246

For plane wave propagation, both w and x must be real. A comparison of Equation

(2.42) and Equation (2.46) shows that the upper limit for L real is -- = v3 for the

BSB system, while there's no limit on RB. Incidentally, another alternative Boussinesq

System, the version used by Lau and Barcilon [40] results in a dispersion relation

2
_I 2 + 1 K 3

W = 0. (2.47)
3

This dispersion not only has a cutoff, but is also not symmetric about K = 0, which implies

incorrectly that wave propagation in the forward and backward directions are different.

Figure(2.2) illustrates how the dispersion relations, Equation (2.42) and Equation (2.46),
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compare to the full gravity wave dispersion relation, Equation (2.21). Both H and g were

set to unity and 3 = 0.5 in the figure.
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Figure 2.2: Comparison of the full water wave dispersion relation: . BSB: -

--- , RB:---•

Regularization, as performed here, does bring a couple of subtleties that must be

kept in mind: (1) Since we are using the lowest order relations, we are assuming that

the solutions are wave-like. However, there is no reason to expect that the solution will

approximate a traveling wave solution for arbitrary Cauchy data. (2) We have preserved

two-way wave propagation. In most instances when regularization is performed, the
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Boussinesq equation that results is applicable to strictly one-way wave motion. (3) Since

the velocity is in terms of the surface values, rather than in terms of averaged-depth

velocity, say, the irrotational condition, with u and v being respectively the shoreward

and span-wise velocity components, remains in the simple form

u• = v", (2.48)

which is quite convenient in the development of three-dimensional problems.

In order to scale the hydrodynamical model developed in the previous section, define

a parameter related to the size of the amplitude of the disturbance, and another related

to the size of spatial-or temporal-changes. The first one is a E a/ho, which gives an

estimate of the degree of nonlinearity in the problem. The second is 0 2 =_ (A/ho) 2. which

conveys the degree in which dispersive effects are important. The Stokes number, whicin

is a measure of the ba2ance between nonlinear to dispersive effects is defined as the ratio

a/032. For U < 1, nonlinear effects are weak, and only a small portion of energy transfer

occurs on moderate space-time scales, so that 0(1) nonlinear effects are possible only

after very large scales. For U '- 1, inertial effects are of the same order as dispersive

effects.

Using the convention in what follows that new --- scale x old, the scaling adopted is

t .- i//a h -u - r (2.49)A \/a r /a h- r A -

where h0 is a characteristic depth of the water column.

In addition, we seek to scale span-wise dependence to reflect the fact that we are

interested in a case of propagation that is primarily shoreward directed. To do so. it is
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assumed that there is a const < 1 such that

O(I-.KI) = const x O(IK I), (2.50)

for which a consistent uniform expansion of the RB exits, and that is physically relevant.

It may be shown that the size of the constant is of the order of the reciprocal of 3. Since

this parameter has considerable nuisance value, the parameter shall be set const = 1/3

for the rest of this study. This implies that the span-wise variables must be scaled

Y - a 1/2 Y -.u a- 1/ 2 y.u, (2.51)

which shall alter the regularized system, but shall not affect the irrotational condition,

Equation (2.48).

2.2.4 Description of the Bottom Topography

Field data from the continental shelf suggests that there are two time scales, a fast time

scale t which measures the evolution of the fluid quantities, and a large time scale T

which measures the evolution of the bottom topography. In addition the data suggests

that the typical height and slopes of the longshore sand ridges is such that E = O(V'h) =

O(a). Furthermore, the type of longshore sand ridge under consideration is such that

the measure of longshore spatial variation is larger than the spatial variations of the fluid

quantities. It is proposed that the sand ridge shoreward variation be X = ax. Hence,

two scales of shoreward variation exist, so that

19.r -0 ex + 0X. (2.52)

Thus the bottom in scaled variables is

h(X,y,T) = 1 + -f(X,y,T), (2.53)
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where the function f = 0(1).

2.2.5 Slightly Resonant Interacting Triads

By substituting a uniform expansion of the form

77 = fo+a 1fl+a 2f2 +.

u = go+a gl + a2g2-+"'" (2.54)

into Equations(2.44), (2.45), and (2.48), matching order by order we are able to solve for

the surface quantities to lowest orders in a.

For the momentum equation, Equation (2.45), the first three orders are

a°: Uot + r/ox = 0

vot + r/oV = 0

a : Ult + uouoz + ?hx + r/OX = 0 (2.55)

Vit + UOVOx + 771Y = 0

a2 U2t + UluOX + UoU1x + UoUox + VoUoy + 77z2 + 771x = 0

V2t + UIVox + UOVIX + UOVOX + 72 = 0

Similarly, for the irrotational equation, Equation (2.48), we have

a00 Uo0, -Vo = 0

a 1 : uly - vx -vox =0 (2.56)

a02 U2y - V2z - VlX = 0.

Finally, Equation (2.44) yields

00 i7ot + uo - loxxt =0

01 771t + Ul- - ± r/ xt = Fj(r/o, uo, vo, G;x,X,y,t) (2.57)

a2 77r2t + U2, -- r/± t=F(o oVrl l l G; x, X, y, t),
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where G(X, y, T)= - E ,yT

o32 23 2 (770.xx + Gr/°xzt)
F, v, 3 + - Uox - uor7ox - Guox - ?7ouox + 3(258)

33

and

/3 2

F 2 = vjY + -U lX _ U 177 O_ _ G u lzT _ 771u ~x + 2f3 (7rlx~ t+ G r7 lxxt )

-Uollhx - Guoux - G~ouo + G~xuo-Vru-Got-roo + 4/32Gxao7° 432 (2.59)3 3

0 2 7ox +4 32 Gxr7loýt +4L32Grtozxt-uorlox - Guox - 77oUox + 3 3 3

Making use of the appropriate irrotational condition when a simplification is possible,

cross- differentiating the momentum and continuity equations, and combining the results

into a single equation yields

ao: £77o =0

£I C £7, = 91(rgo, uo, vo, G;x,X,y,t) (2.60)

Q! 2 : £0"2 = G2(77o, uo, vo, rl,ul,Vl,G;x,X,y,t),

where

£ = - -tt _ '0. . -49 tt. (2.61)

Note that C is a linear operator that shows up at every order. The inhomogeneous terms,

g1 and 9 2 are, respectively,

,= (1 + )32 Ott/3)r7oyy + G(1 + 23 2
9tit/3)%,o,~ + 2(1 + '32 1tt/3)77ox

(2.62)+(Uo2/ ) -
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G2 (1 + 32tt/3)Tllyy + G( 1 + 2+2,+tt/3)7ix + 2(1 + 32Ott/3)7l7x

(1 + !32 Ot/3)?/oxx + G( 1 + 2 9tt/3)770yu + 2(1 + 32 tt/3)77o~x

+Gx(I + 43 2 att/3) + 77o, + Gyl7oy + 2ý32 Gyyqiott/3 + 43 2Gv17otyy/3 (2.63)

-0?71UO + 7OUI ).rt + (UIUO)-- + (UOL - (uo?7o)xt + G( 0/2)..

+(U20/2)yy + (vO2/2).~,. + (i702/2)yy - (r/otvoh,.

Beyond this order the calculation of the uniform expansion is invalid since it is beyond

the order to which RB is an approximation to Euler's Equations. The lowest-order

theory is suitable since we are only interested in phenomenology, rather than engineering

accuracy. Appendix A gives the reader an idea of the sort of things to expect at 0(a').

The order of RB and the two-scale technique restrict the region of validity of the

present model. The lowest order solutions, which are linear, are valid for distances that

are less than O(1/ka), the scale over which triads of Fourier modes exchange significant

energy. Higher order terms and processes neglected in the expansion restrict the range

of the present nonlinear solutions to distances less than O(1/ka 2 ). Thus, RB is not

formally valid for very long evolution distances. Boussinesq equations are strictly valid

for U = 0(1), but they are quite robust [411. In this study, the value of U is in the range

of 10 to 30.

Assume the shoreward velocity is

u(x,X,y,t) = f2.[a(k,X,y)+ aA(k,X,y)]e'(kz-"W)dk + c.c. (2.64)

+ f_°•[b(k, X, y) + aB(k, X, y)]ei(-kx-Wt)dk + c.c.

where k = i.K, and further, assume that such solution may be approximated by the
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discrete Riemann sum

u(x,X,y,t) = •• 1 [aj(Xy) + aAj(Xy)]ei(khX-Wzt) + c.c. (2.65)
+ >=-[bj(X, y) + aB,(X, y)]ez(-kx-"o-t) + c.c..

where c.c. stands for complex conjugate of the expression immediately preceeding its

appearance. The a's are the complex incident wave amplitudes, and the b's are the

complex reflected wave amplitudes. The reality of the physical variabies implies that

a-, = a' and b.. = b*. The span-wise velocity at the surface must then be

V(X, x, y, t) = •=, -([•a•(X, y) + O(a) 1ei(kx-zWt) + s.c. (2.66)

+ ZE' -.- fbj(x, y) + o(a)]et(-kjx-Wt) + C.C.

in order to satisfy Equation (2.48). Since, to lowest order, uot+ 7ox = 0, an expression for

the surface amplitude is readily available: the replacement of the lowest order velocity

into the momentum equation yields

, = 1 V[aj(X,y)+ aAj(X,y)]e(kIx-•,t) + c.c.
I)

+ E-- [bj(X, y) + aBj(X,y)Ie'(-kjzwt) + c.c. (2.67)
j=1 k1

A solution of the form given by Equations (2.65), (2.66) and (2.67) is valid, provided

that the following relation holds between the frequency and the wavenumber:

2 _ k2
W2 _ = 0, (2.68)+ +/2-kk2

1+ 32

which gives the dispersion relation for the jth mode, the positive root kj corresponding

to the shoreward-directed wave, and the negative to the seaward wave.

The solution must also satisfy a compatibility condcUion. Since the linear operator C

in Equation (2.60) appears in every order, and terms of lower order appear in the inho-

mogeneous part, secular trms arise. It is an artifice of having truncated the expansion,
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and is typified by the possibility of blow-up due to resonance. This resonance condition

for jth interacting waves is,

kj+-.+k+k•= 0
(2.69)

Wj +".+W2+ W1= 0.

where the wavenumbers and corresponding frequencies obey the dispersion relation given

by Equation (2.46). In the scaling adopted in this study the 0(kj) = O(Wj).

The resonance condition is possible for certain wave systems. For isotropic waves. i.e.

w = w(K), the resonance condition, with w(0) = 0, can always be satisfied if W'(#) > 0,

and w"(K) > 0. These conditions cannot be satisfied if w'(K) > 0, w"(K) < 0.

To prove this, we note that the dispersion relation w(K) is convex downwards if

w"(t) > 0. Hence,

w4(1 r2 -- KI1) <w Ll(r-1) + wl(r-2) < W(n2 + K)" (2.70)

Let K 3 = K 2 +K 1 , so that when the angle between K 2 and K, changes between 0 and 7r,

one has that IK2 - l r-3 K 2 + K1 I. Hence the frequency w 3 = w3(K 3 ) will change

continuously between w(1 r 2 - .1 1) and w(K 2 + n1 ), and will coincide with W(KO)+ +w(K 2 )

at some point. If w"(r.) < 0, however, we have w(Ki) + w(n 2 ) > w(rc2 + rl) 2! w(n 3 ) and

at such point coincidence is impossible.

Since the dispersion relation for gravity water waves is such that w'(K) > 0, and

w"(K) < 0, perfect coincidence is not possible. At most we expect what we shall refer to

as "weak resonance". Furthermore, we shall restrict our attention to the special weakly-

resonant triad case in which k2 = 2k, - b, w2 = 2w1 , where the detuning parameter

6 < 0. The compatibility condition is that solutions of the a'+' be orthogonal to the
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solutions of order at and below, so that resonant solutions are avoided:

jkl IO+ 2 7r/jk e±ijkl x(g9 + gj)dx = 0, where j = 1, 2, 3..., (2.71)

starred quantities conjugated. The case of quartet interactions, to lowest order, appears

in Appendix B, and is a straight-forward extention of the ideas presented here.

The justification for using a small number of modes comes from field data. Figure

2.3 suggests that most of the energy in the waves is found in the first few harmonics.

This situation is quite typical. The figure also shows the shifting of energy from lower

frequencies to higher ones as the wave travels shoreward over a decreasing water column

depth.
E(•)

~500

u,,m ..e.• -3e,

Figure 2.3: Energy for shallow water waves in the Southern Baltic Sea: h0 = 6.Om

-, h0 = 2.Om -------- -- From Druet et al. [56].

Application of the compatibility condition to the lowest order terms in Equation

(2.63), yields, after some algebra, the evolution equations for the modes in Equation
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(2.65), and Equation (2.67)

al. + iefDIElal - iaFIalyy + iaD 1Se-i a~a 2 = 0

a 2 , + iEfD 2 E2 a2 - iaF 2 a2 ,y + icaD 2 S2 e+i xal (2.72)

bix- iEfDiElbl + iaFlblyy - iD1Sle+ibxb~b2 = 0

b2. - iefD2E2 b2 + iaF2b2yy - iaD 2 S2 e-i 5 xb2 = 0.

to O(6/X), after substituting back X = ax. The constants are

Dj = [2(1- 132J)-

Ei = kj(1 - 3 3

Fj = 1/2kj (2.73)

s, k- kj2-k l-; ý
W1  k, k

S 2 = 2k2/w 2 + 2w2

Equation (2.72), along with appropriate boundary conditions determines in an ap-

proximate way the ocean surface. The incident and reflected waves are decoupled owing

to the assumptions and restrictions on the spatial variation of the bottom topography.

If, on the other hand, the longshore sand ridges being considered were

h(x,X,y,T) = 1 +Ef(x,X,y,T) (2.74)

the resulting modal equations, to lowest order, would be

a,. - i~fD1 E-Ila, + iefD1 E1 LI bi - iaFlaly + iaD 1 Sle- xa~a 2 = 0

a21r - iefD2E2 7'2 a2 + i~fD2 E2 -b2 e2' 6 , - iaF2a2,y + iaD 2 S2e+'Iba2 = 0

bl. + i~fDIEt7 1 bl - iefD1 E•j+a, + iaFblyy - iaDISle+'Ibib2 = 0

b2, + ief D2 E2b2 - isf D2 E2e A-i2b/'+a2 + iaF2b2-y - iaD 2S 2e-i6 b2 = 0,
(2.75)
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to O(6/X), with

Sjk, j2ir/ki (fx1 + 2ikjfx - k2f)dx
2r - in r

Lk 1 2 1r/jkl (f,, + 2ikjf, - k f)e-2iJkldx

+ jk 1 f(
+ = 2 1r (f,, + 2ikjf, - k f)e+ 2ijklxdx. (2.76)

The most striking difference between the way Equations(2.72) and (2.75) describe the

surface is that in the former case, the bars do not act as scatterers, and all energy in the

reflected component is put into it through the boundary conditions.

2.3 Internal Wave Case

Shallow water weakly nonlinear interfacial waves appear as highly coherent groups having

well defined wavelength and are observed propagating shoreward on a density stratifica-

tion, such as the picnocline. Their crests are generally oriented along isobaths [57,58].

Their wavelengths range from 200 to 1600 meters, depending on the depth, which can

be considerably larger than the local water column depth. An estimate of the energy

contained in the larger ones is in the order of O.1MJ/m2 . They have been seen to appear

twice a day in some areas, coinciding with the tidal cycle, and originate mostly in places

where there are sharp changes in the bottom topography, such as on the edge of the

continental shelf.

2.3.1 Internal Wave Hydrodynamic Problem

In this section the Hamiltonian formulation to the two-fluid internal wave problem is

developed, relying on Bowman's work [50]. Illustrated in Figure 2.4, define the domain

Q I R2 x [-H, 77], and Q2 = R2 x [qi, D]. The lower layer (1) has a uniform density Pl,

and the upper layer (2) a density P2 < P,. The fluid is subjected solely to gravitational
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forcing. The velocity field is now given in each layer by (u, w)i, where the subscript

refers to layer 1 or 2. The interface between the two fluids is given by z = 77(r, t) and

the bottom by z = -H(r,T).

ý-g z/ D

021P2

Z 77( x.:)

h 0 * OPI z =-H( x,T)

Figure 2.4: Side view, internal wave problem.

Assume the fluid is incompressible and irrotational in each layer. In terms of a scalar

potential, the velocity is given by

(U, W)i = V 3 0i.- (2.77)

From conservation of mass, Equation (2.4), the equations of motion within the fluid

are

A30i = 0, in Pi. (2.78)

At the interface, the pressure is continuous, hence the dynamical boundary condition

is

Oi - I V3AI1
2 - gpir7, at z = 1?. (2.79)
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The bottom, which is assumed impermeable, has a normal velocity that agrees with

that of the fluid. Thus

= -VH.VOI at z = -H. (2.80)

The kinematic condition on the interface is again L = 0, or

oi,, = 77t + Voi-Vr at z = 77. (2.81)

Finally, we make the simplifying assumption that the normal velocity disappears at the

constant air-water interface:

02,z = 0, at z = D. (2.82)

2.3.2 Hamiltonian Formulation of the Internal Wave Problem

The conjugate variables in this case are I7 and U p2V¢2 - pV(1 . The Hamiltonian

system takes the form

6E,Ot = - V.(ý-U)

Ut = -V( b-E-. (2.83)

By virtue of the boundary conditions at the air-water interface, the results from the

previous section shall be exploited to arrive at a regularized Boussinesq equation for the

internal wave case. The potential energy is simply

V = J d2r2g(p1 - P2) 2 . (2.84)

R
2

The total kinetic energy is the sum of contributions from both layers, thus

K = Pi f d2 r J 2 IV 3 12 dz + P2 J d2r 2 IV 3 0 2 12dz = K, + K 2. (2.85)

R2  -H R2 -7

The kinetic energy in the lower layer is given by Equation (2.31). We need only to figure
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out K 2 . The boundary condition given by Equation (2.82) can be exploited to find K 2

as a surface integral, using Green's theorem. Assuming the gradients of the potential

tend to zero as Ir -r ,

K 2 = - J d2 rp 2VIV4l 2 . (2.86)
R 2

Define the pseudo-differential operator G = -kcoth(HkD), which comes from sat-

isfying the boundary conditions on the interface and on the ocean surface. Adding the

expressions for K 1 and K 2 , using the definition of U, and the operator G, the total

kinetic energy is

1= d2r{ (H 7 7)U 2 + 2P2U + U(V/.U)2} + O(Q302), (2.87)

R2

or rearranging,

1 u d2 r{ [(H + r) H (VH-U)2} + O(- 3/32),

K 2] Pi HP U + H 2  2  jj a 2

R 2  P 1  1

(2.88)

where M = + G = - kcoth(HkD).

Depending on the size of D/A, there are three physically distinct possibilities:

"* if D/A < 1, then U-MU = O(aD/A2 ), and M ,z 1/D - 2 For such case, the

terms tU-U and U-MU balance if a 2 D/A 2 _ 1. We obtain a Boussinesq system.

"* for D/A - 1 then U.MU = O(a 2 /A). In such case, if aA 2 /D - 1, we obtain the

Intermediate Long-Wave equation.

"* Finally, D/A > 1, so that U-MU = O(a 2 /A), then M : I k i. If aA - 1, the result

is the Benjamin-Ono equation.

Note that this last case corresponds to a very deep upper layer, lying over a thinner lower

layer, which we do not consider relevant to the problem in this study.
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By substituting the expressions for the potential and kinetic energy, Equation (2.84)

and Equation (2.88), into Equation (2.83), the general dynamical equation for the dy-

namics of the internal wave field is obtained:

+q- H2 )U 2U

V-[-H+ ,)- _]U} - PV.{H(VH)2U + H2MU}PI 1 (2.89)
Ut -V.--•u'u + (PI - P2 )g9}-

The result from linear theory can be recovered by neglecting second and higher order

terms in Equation (2.89). The solutions proportional to exp{i(kx - wt)} satisfy

W77 = p1_ H- p-HM)kHU
PI PMD (2.90 )

wU = k(p1 - p2 )g7}.

Thus,

c 2 = g(P 1p- P2) 1 - P2-Hkcoth(kD)]. (2.91)T2  P1  P

The relevant case in this study is the first one. The Boussinesq equation is then

7, = -V.{-L(H + q)U} - PV.{H(VH)2U + !H'DVV.U}PI P, 3(2.92)

= -V'{2•Uu + (pl - P2)977}.

2.3.3 Regularization and Scaling

The lowest order relations

77t = -V.{I-HU}
P, (2.93)

Ut = -V{(p 1 -P2)977}

are used in a manner similar to the surficial case to modify the troublesome parts of the

dispersive terms to get the model for the hydrodynamics relevant in this study:

17t = -V.{i-(H + ?I)U} + D-PV.[V( ,t()]P3)r (2.94)

= -V{'UU + (PI - o2)g7}.

The scaling is the same as the surficial case, except that U has units of momentum.
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Let -y - P be the Boussinesq parameter, and the typical thickness of the lowerP1

layer be ho. The scaling adopted here is

t ýVgotU _V'WU 7- /ah - - d - J . (.6
A7 t 7/G ho ho A 2%

Equation (2.94) is, in scaled variables,

it+ V.I-L(h+at7)U}-dd2'2•-•V.[rV(h,7t)J 0Pi 3P,(2.96)

Ut + V{!U.U + y7} = 0.

Additionally, the span-wise variables are scaled to reflect the weak longshore dependence

of the waves:

Y -- al/2y Y -u -- a-u/2.u. (2.97)

2.3.4 Slightly Resonant Interacting Triads

Once the equations are non-dimensionalized. the procedure used to arrive at the lowest-

order theory is the same as was done for the surface case. In this presentation the

reflected wave shall be eliminated from the outset.

The uniform expansion, after cross differentiating Equation (2.94), is

aO: £7o =0

ao: £171 = Gdr(%o, uo, vo, G;'x,X,y,t) (2.98)

a 2 C?72 = G•2(ilo, uo, tvo, 771,u I, vi,G; x,X,y, t)

where

Cd =52P2-zOz- (2.99)

The inhomogeneous terms G, and G2 involve terms that appear in the left hand side of
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equations of order lower than where they show up. Consider the lowest order, in which

G,= (-I + dP20")i+o-- G(y + d2P29 )o + 2(- + d )?7oxx
3 P 3y, 3 P , O77 0-px ( 2 .1 0 0 )

+(u'/2). -- (uo0•o)x±.

The lowest order modal expansion for the surface velocity shall be assumed to be

uo(xXyt) = =jl a3(X,y)ei(k-wxt) + c.c.., (2.101)

The lowest order relation uOt + -yVrio = 0, is used to obtain the surface amplitude

2

r/o(x,X,y,t) = E --j -aj(X, )ei(kxWt) + c.c.. (2.102)
3=1 -yI

Substituting Equations (2.101) and (2.102) into Equation (2.98) and applying the com-

patibility condition, yields the equations for spatial variation of the first two modal

amplitudes

a,., + i-fDiEjal - iaFlai., + iaDlSle-i6 aia 2 = 0
(2.103)

a2, + izEfD 2 E 2 a2 - iaF 2 a2,, + iaD 2S 2e+ixa21 = 0,

to O(b/X). The constants are

pi3 2wv2
D = 1/2(1 -A 2-

Ej = k,(-y -- d3P2

F, = 1/2kj (2.104)

s•I k 2 -=•k- ki + w + w )}

S2  - L -k+ 2 .

The dispersion relation for the internal waves is

+ 2 o. =0 (2.105)
d+32P2k3
+ p,



Chapter 3

The Mass Transport Problem

The drift velocity is the second-order steady state flow that is created by the passage

of overlying water waves in the sediment-laden boundary layer that hugs the bottom

topography. The boundary layer is assumed to have a characteristic thickness bbb < h0 .

The sediment in the boundary layer shall be assumed to move from place to place at

a rate equal to the drift velocity. This chapter shall present the lowest order theory,

leaving the details of the higher order theory to Appendix A.

In order to subsequently compute the drift velocity, it shall be required to find the

fluid velocity immediately outside of the sediment-laden boundary layer. From Equation

(2.29) in scaled variables, the shoreward velocity is explicitly

Ub i-.U(r,-h,t)

u(r, t) - /f 2{-h[(hu.x(r, t)) + a(hvy(r, t))] + ½h2(u.,,(r, t) + av y(r, t))},

(3.1)

and the span-wise velocity

Vb ý--.U(r,-h,t)

= v(r,t) -I3 2{-h[(hu.,(r,t)) + a(hvy•(r,t))] + 1h2( u,(r,t) + avy(r,t)))

(3.2)

in the neighborhood of the boundary layer. Neglecting the reflected component, the

54
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bottom velocities to lowest order are

Uob = uo+ 32'.uoxr

= E'= 1 Cja(X, y)e(•k'x-W't) + c.c.
(3.3)

Vob = VO + 02 2 h(3

Vb2 To+37 0

= -zE= [Cja 3,(X, y) ÷ i02k1(h2 ),]ei(kYTW~t) + c.c.

where C. = 1 - 82k0h2

3.1 Hydrodynamics of the Boundary Layer

In the boundary layer the transverse momentum, vertical momentum, and the continuity

equations are respectively

ut + u-Vu + wu' = -!Vp+vAu+vu,,

wt+u'Vtw+w z = -= P +g+vAf+vfz (3.4)

V-u + i, = 0

where v is the eddy viscosity. Across the boundary layer the flow velocity changes

from zero at the bottom boundary to some finite value characteristic of the exterior

inviscid fluid. The derivatives with respect to z of any flow quantity are thus, in general,

much greater than those with respect to x or y. Hence, within the boundary layer,

IVul «< Iuz', IV 2 uI <« I u,1, etc. In view of this, it may be concluded that the

transverse momentum in Equation (3.4) is well approximated by

ut + u-Vu + wu' = -1Vp+ Vu. (3.5)

P

The velocity t- must also be small. The continuity statement in Equation (3.4) suggests

that the boundary layer and fv are of equal order of smallness. Therefore, none of the

terms on the left hand side of Equation (3.5) can be neglected. On the other side of

the equation, it is expected that vu,2 be of comparable size to the inertial terms. The
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magnitude of the inertial terms is represented by the size of u.Vu, hence the balance is

such that O(u.Vu/vu,,) = 1 when the Reynolds number is sufficiently large, i.e. so it

is mostly true in the whole boundary layer. If v/g is representative of the magnitude

of the velocity u and A represents a distance in the transverse direction over which

u changes appretiably, then (V/io)2 /A = O(u.Vu). Since 'bL is the boundary layer

thickness, v b/- ,/62 is a measure of vu, 2 . Thus,

O(6M1R/A 2) = 1, where R - V/g A. (3.6)

The dimensionless constant R is the Reynolds number. Equation (3.6) implies that

6bb AR-1/ 2 as R - o, which suggests that the boundary layer concept improves as

R -- o, and that •ib 0x A1/ 2 v1/2. In this study A is large but of finite length. It is

assumed that the boundary layer does not change significantly as a function of wave

frequency, enabling the replacement of A by h0 in R, so that R = vl/g7oho/v, arriving,

then, at a working definition for the boundary layer thickness

6b1 = v/ho(gho)1/ 2, (3.7)

which shall be non-dimensionalized by dividing by ho. In this scaling, it is implied that

the size of the Reynolds number and the boundary layer thickness are controlled mostly

by the viscous effects, i.e. the size of v.

To get an estimate of the size of f[, the continuity condition in Equation (3.4) suggests

that

O(dv./Vu) = 6blho/A = L3ghoR-"/2  (3.8)

thus

S= O(0lgvhoR- 1 / 2 ). (3.9)

With Equation (3.9) in hand, it can be inferred from the vertical momentum balance



57

that

+- GOOb, (3.10)
P

hence Pz = O(6 bl), i.e. the pressure is approximateiy constant throughout the layer.

We are now in the position of estimating the balance of terms in Equation (3.4). We

approach this in stages. Firstly, to make the system in the boundary layer consistent

with those in the inviscid fluid, we adopt the inviscid scaling. The equations are now

I3u, + a•uVu +aiu 2  = -fvp+ V/ ho h o

/3tv-, + t3u.-VtD + LUW = -,pz + 1/(1 + h'0[j3Aw +1)

3V-u + f' = 0.

Next, we invoke the boundary layer scaling, and at the same time invoke the weak y

dependence scaling. Let

= RI/ 2z
(3.12)

w = 12iV-

and consider the boundary layer equations when the Reynolds number is large. The

system is

out + ao/3[uu., + OvuY] + awui = OPX + u.

Ivt + a,3[uv, + avv,,] + awvu = - p• + V(.a (3.13)

pi = 0(. )

O(u-, + av) + wj = 0.

Finally, we translate and stretch the vertical coordinate 'bJn = z + h, so that

O3ut + a/[uu• + avu•,] + awun = -Pa + Un

OVt + ai3[uv• + Ovv•I + awvn = -p• + vnn (3.14)

Pn = O(bbl)

I(u• + ajv') + w, = 0.
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A locally flat bed has been assumed. In contrast, suppose that the bed had some

finite curvature K, say. This would change the vertical momentum balance in Equation

(3.14) to

p, = KO(u 2 ), (3.15)

but the pressure change across the layer is still of O(6b1), so we are justified in the

assumption that the bed be locally flat.

The following boundary data is used to solve Equation (3.14):

u=v=w=0 at n=0 (3.16)

and

u "* Ub
(3.17)

V . b, tn -- o .

The velocity (Ub, Vb) immediately outside of the layer gives rise to the following pressure

gradients:

-px = i3Ubt + a,3(UbUb6 + aVbUb,) (3.18)

a*p P, IVbt + a!(UbVb + aVbVb,).

We have, thus, all the required information to solve for the velocities in the boundary

layer. Performing the usual expansion

U = fl0+afl""

v = o0+ al"... (3.19)
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the lowest order equations are

Oiot- ion, = 3 UObt

/VOt - V•on• = 3VObt
(3.20)

Pon = 0

3lfuo + tWOn = 0.

The following order is given by

At- ftlnn = -0fluiO. - TbiiOi.o + I3UObUO. + Ult

i•'it - ýI,, = -U3iioibo - ZoVon + i3UobVo., + OVlbt (3.21)

Alzi1 + WIbn = -ýy

and shall be addressed in Appendix A. Note that terms such as Ult, etc., have been

dropped. The goal is to compute the drift velocity and these terms do not contribute to

the steady part of the drift velocity since the external flow is time harmonic.

A solution of Equation (3.20) of the form

2

iit = Z a'Pz(X, Y, n)ei(kiz Wt) + c.c. (3.22)
j='

subject to the boundary conditions given by Equations(3.16) and (3.17), is found by

integrating Equation (3.20). The same procedure is used to obtain i. The result is

tiO = Z-- 1 Cjaj(1 - e-nAJ),i(kx-Wzt) + c.c.
_3 (h "yj/ J (3.23)

= "•= ki(I32( h2)•a3/2 - C~iaj/k2)(1 -e-nA,)e&(k-w,t) + c.c. (.3

to = i/I Zj-1 kjCja,(1 - nAj - e-nA )/Ajei(kz'X-W't) + c.c.

where Aj = (1 - i)VF3w,/2. The vertical velocity iv- was found by integrating the conti-

nuity equation.
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3.2 The Drift Velocity

In this section we follow closely Longuett-Higgins' study on mass transport by oscillatory

flows [25]. Define the time average of the quantity A as

(A)E=- j + A(s)ds =-l A(s)ds. (3.24)

The drift velocity shall be the time average displacement rate of a fluid particle.

As Stokes noted [26], the drift velocity is second order in nature. That is, if ii(r, z, t) is

the Eulerian velocity, and the motion is periodic,

ii(r, z, t + i-) = fi(r, z, t), (3.25)

and expressible as the asymptotic series

fL = r-o+al +,l •- a2f2 +-- (3.26)

then (fio) = 0 is a statement of this assumption, i.e. the lowest order steady state current

is zero. Let U(ro, z 0 , to) denote the Lagrangian velocity, or velocity of a fluid particle

at t = to with position (ro, z0 ). Then, the displacement of the particle from its original

position to some other position

(r, z) = (ro, zo) + U(ro, zo, i)di (3.27)

at time t. It follows that

U(r, z, t) = f[(ro, zo) + U(ro, zo, i)di, t] (3.28)

which can be formally expanded in a Taylor series

U(r, z, t) = fi(ro, Zo, t) + t Udt-.V(ro Zo)ro, zo, t) (3.29)

+1{ft Udt}T'H(ro,zo)fL(rozot). ft Udi + ..
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Here H stands for the Hessian, and both the Hessian and gradients have subscripts to

remind us as to where they are to be evaluated. The steady state Lagrangian velocity

is in fact akin to the drift velocity. An approximate expression for it. in terms of the

Eulerian velocity in the boundary layer, can be obtained by expanding

U = Uo + a'Ui + a 2U2 +... (3.30)

and substituting Equations (3.30) and (3.26) into Equation (3.29), order by order. After

time-averaging we obtain

0(ao): (UO) = (uo) = 0

0(a') (Ul) = (u1 ) + (f' uodi.Vuo)
(3.31)

O(a 2 ): (U2 ) = (u2 ) + (ft Ujdi.Vuo) + (f t Uodi.Vu,)+

({ f' uodi}T'.-/uo, f' uodi).

The drift' velocity is then

(U, V) = alU1 + a 2 U2 +... (3.32)

We shall compute the drift velocity to lowest order in this chapter, and leave consid-

eration of the higher order contribution, which can be rewritten as

(U 2) = (u 2) + (ft uld/.Vuo) + (f ft' uodt'.Vuodt.Vuo) + (f t uodt-Vul)+
(3.33)

'({f t uodj}T. Huo. ft uodt),

to Appendix A. Expressing the O(a) in component form, after weak y dependence scaling

has been adopted, the drift velocity is

U2 = (Ul) +• (ft uodiuo:•) + (ft wodiuon)

(3.34)
V = (v,) + (ft uodi, o•) + (ft wodtvon).
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3.3 The Mass Transport Equation

3.3.1 Remarks

In regions where sand ridges are found the mean slope of the bottom is very slight.

Hence, downslope gravitational transport. important in the shoaling region. plays an

undiscernible role in shaping sand ridges in the deeper end of the shelf. The type of

sediment transport we have in mind is primarily suspended load. The sediment drifts as

a result of the unclosed orbital paths, resulting from the asymmetry i. the nonlinear wave

motion. In what follows the fluid wave field shall be assumed to be entirely represented

by the incident wave. Further, it is assumed that the viscous boundary layer is sediment-

laden, composed of cohesionless, rarely interacting, sand particles.

The sediment concentration p, in coastal environments has a very weak influence on

the fluid flow [59]. Typical values for the concentration are p - 10 - lO- 4pprn, and

it shall be assumed that this is the situation thoughout the shelf. Chapalain [59] and

Bokzar-Karakiewikz et al. [60] concluded that time independent and vertically uniform

parameters of eddy viscosity and eddy diffusivity are adequate in providing satisfactory

accuracy for sediment morphology models on the shelf. In this study we shall adopt a

very simple model, found in [3], for the sediment concentration.

The equation of continuity for the sediment concentration is the advection-diffusion

equation

Pt + V.(up) + [(w - vf)p]n = 0, (3.35)

where vf is the sediment "fall velocity"and n = (z + h(X, y, T))/6b1. Assume that, appart

from random fluctuations, u and p do not vary much over small transverse spatial scales

so that the second term of the above equation may be neglected. In light of this, the
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sediment concentration changes at a rate Op/On proportional to the vertical flux. Hence,

wp = -7Pn (3.36)

where -y is the diffusivity constant.

The flux, which is the product of the concentration and the velocity, can be split into

a time dependent part C' and a time independent part Cm. Boczar-Karakiewicz et al.

[9] found that in the sand ridge areas, the ratio CI/C' = 0(10-2) for the off-shore case.

This situation shall be assumed to apply throughout the shelf, so that the sediment

concentration shall be represented solely by the time independent part in this study.

Employing this assumption and substituting Equation (3.36) into Equation (3.35), the

equation for sediment concentration is now

'yPn + VIP = 0. (3.37)

The boundary condition may be taken as

-Y 09n = P(r), (3.38)
v1 On

where P(r) is akin to Svendsen's [611 "pick-up function", which incorporates such effects

as the degree of wave asymmetry and skewness of sediment flux, and a Shield's parameter,

which sets a threshold fluid velocity at which sediment will be picked up, based upon the

sediment particles' buoyancy and geometry, and the fluid's velocity field and viscocity.

The pick-up function P(r) is obvoiusly an empirically-derived function.

Solving Equation (3.37), the sediment concentration takes the form

p = P(r)e-", (3.39)

where a = vi/-y. The fall velocity v1 is species-dependent. It is either measured or

estimated by calculating the balance of drag to buoyant forces for a particle falling
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freely into a static fluid. The diffusivity constant I is hard to estimate. Sedimentologists

usually measure its value in the field. The pick-up function P(r) is an empirically-derived

function.

3.3.2 The Transport Equation

For the sake of clarity, the mass transport equation shall be derived assuming transverse

dependence in the x direction only. The generalization to variations in y will follow in a

straight-forward manner.

Let T E [0, oc) and QT E VZ1 x [h(T),(1, where 4 > h(T)+ bb, be the boundary layer

time-space domain, and consider a differential "volume" element in such a domain, as

shown in Figure 3.1, which on the bottom is bounded by the ocean topography, and on

the top by a flat lid z' = C. By examining the balance of mass in this differential volume

a transport equation can be developed.

It is assumed that the sediment concentration p is entirely negligible for z' > (, and

moves on fast-time scales. In what follows p : QT - V1T. The sediment concentration

and drift velocity are thought to be CI(MT). and the bottom topography h E C1 (T),

and piece-wise linear in QT.

The mass flux per unit length at x in a time interval [T, T + AT] is given by

T d7 Jr) dz'p(x, z')U(x, z') =_ IT di jr dz'M(x, z'). (3.40)

Consider a portion of the region, say [x, x+Axj in a time interval [T, T+AT]. Since mass

cannot spontaneously vanish or be created, the net amount of sediment between point x

and x + Ax must be compensated by a change in the concentration of the sediment, or

by a topographical change in the bottom surface. The flux difference in the space and
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z = -h(xT)

TT

IT~hz+~xi J+Ax TdT

T A ) ----- ---- (

Figure 3.1: Volume element used in the derivation of the mass trasport equation.

time intervals [x, x + Ax], [T, T + AT], is thus

T Tdr C dz'M(x + Ax, z') - T+Td7 dz'M(x, z'), (3.41)
IT' J(X+AX,'r) IT' h(x,-r)

and the total mass in the given portion at time T is gven by

, dj (,Tdz'p(ý, z'). (3.42)

The change in total mass in a time interval [T, T + AT] due to net accumulation is given

by
jfZ dý I(•,T+AT) d zP(•'z') - <d dz'p(].hz'), (3.43)

or equivalently,

frz+Ax 
h((,T+Ž.T)

Exqu a t i n g ( 3 . 4 1 d ( 3 .4 4)< db T d fy tl. 4

Equating (3.41) and (3.44). dividing by AxAT and formally taking the limit as Ax. and
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AT go to zero, we have, on the right hand side.

1 fmA+AOAdOThfT+ d f AT) d-'(U~MAIT-oAr-° =' T X ' dhý T dZ ,-, z')

I X+ h(CT)+A Oh~.T)

h T, +f x dý fh( CT) + T dz'p(ý. z') (3.45)

p(x, h(x, T)) .
WT-

and on the other side of the equation.
I fT+AT

limAxT~oAX_0 i T d7{f fh(+Ax,,) dz'M(x + Ax, z') - f dz'M(x. -')} =

I rT+AT ff dz'[ M(x, z') + Ax am(x, z,) +hmAT-oAxr-o =.3"T "h(x+Ax,•.) .

fh(.r,) M(Xz')} = HmATOAXO =AT--'T f ,+AIX "zLM, f,,')

hx, T) M

(3.46)

Therefore, the mass transport equation is

Oh(x,T) = K' a (3 .4 )
aT p(x,h(x,T)) F X ,p(xz')U(x'z')dz'

where K' is a constant of proportionality. Since the boundary layer is assumed very thin.

we may define the mass transport flux as

6 t
A = p(x, z')U(x, z'))dz'

v = fb p(xz')V(xz,z'))dz' (3.48)

so that the transport equation now reads

ah(x, T) _K

T - K 
(3.49)OT Po"

The generalization of Equation (3.49) to one more space dimension is

Oh(x.y,T) K(
O T - + (3.50)
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where pi and v are the shoreward mass flux and the longshore mass flux. respectively.

Note that when weak y dependence scaling is adopted in Equation (3.50). the longshore

mass flux shall be 0(a) smaller than all other quantities in the equation.

In the remainder of this study, it shall be assumed, for simplicity, that the sediment

concentration is constant and equal to Po in the boundary layer. In terms of Equation

(3.34), and upon use of Equation (3.48), the calculation of the mass flux components, to

lowest order, are

2k 2C2I au1' 2 Aj C 2 I a 2
Il :- 33 1i+=C (3.51)

where

7.~i= -j b 3a 1
-3j + I-(,bb

2 2 2

+e-cijbl[cos ajfb1 - sin aTjbb1][1 - 3oaj(a'j6bI + 1)] (3.52)

and

"2j= 3(1/2 - ajLb1) + e2a) 6 bl/4

-e- 0-)bbl[1 + 6 bl.7 3] COSaj0bL + 2e-'Jbb6 sin Gj (3.53)

for the shoreward mass flux, and

2 iC 2a *a
= aE JJ + 0(033) + c.c. (3.54)

for the longshore directed mass flux, with

S= O 6 bl--1 -- •(1 - e-21a7bb) + e-C7ib4(cosOj~bI - sin G.1
6 bl)

+OAj[A1(1 + e2a16bb) + e-A)6 b1(i~bbo./2 - 1)]. (3.55)

The quantities "11, 121 and ,71 are plotted parametrically in Figures 3.2, 3.3, and 3.4.
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0.3

Figure 3.2: Variation of 111, with 6 bl = 1.0 fixed.

Before proceeding, two important remarks are in order. Firstly, it is noted that the

bottom needn't be slightly perturbed to initiate the development of bars. Even a

flat bottom wiHl eventually develop bars given that all the conditions are right. Sec-

ondly, we are now in the position to justify the two-time scale solution of the sur-

face/bottom system. The ratio of the magnitude of the time rate of change of the

bottom to the Eulerian velocity leads in a straight-forward manner to the conclusion

that t/T = O(a)O(6b1)O(p) - O(10-'), assuming that the boundary layer thickness is

typically O(10- 2ho) and the sediment concentration is O(10-4) ppm.
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-4 .3

Figure 3.3: Variation of 121, with 61b = 1.0 fixed.

F.0

Figure 3.4: Parametric Plot of ,7", with •bbi = 1.0 fixed.



Chapter 4

The Complete Model:
Mathematical Analysis

After summarizing the model, this chapter shall be devoted to the details of formal

and analytical results, primarily relevant to discerning the behavior and structure of the

surface system. Our concentration on the surface system is motivated by the fact that

much is known already about the type of equation represented by the mass transport

equation, whereas the surface system, insofar as we can tell, is a new mathematical

equation. Many of the surface system results presented here are actually not applicable

to the oceanic setting in which this equation was derived; additionally, some the results

are not entirely new. However, since the surface system is interesting in its own right,

and it could serve as a model for other physical processes, the results are still of value.

For the surface, after replacing the multiple scale expansion X = ax,

70
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alx - iKial,, + iK 3f(x,y)al + izK5e-i a~a 2  = 0

a2 Z - iK 2a 2,, + iK 4f(x,y)a2 + iK 6 e+i 6xa2 = 0

blx + iLlblyy - iL 3 f(X, y)bl - iL 5 e+i:xbib2 = 0

b2 x + iL 2b2uy - iL4 f(x, y)b 2 - iL 6 e-ibxb2 ( 0 (4.1)

al(x = O,y) = Ai(y)

a 2(x=Oy) = A 2 (y)

b 1(x=M,y) = Bi(y)

b2(X= M,y) = 62(g)

plus appropriate boundary conditions on y = 0 and y = N. The K and L coefficients

are O(a,-), and are implicitly given by Equý%ion (2.72) and Equation (2.73). If the

boundary conditions B1 and 82 of the reflected wave are small, the reflected component

is negligible. Assuming this is the case, the suiface system is then

a,, - iKlal,, + iK3 f(x,y)al + iK 5e-i xa~a2 =

a2. - iK 2a2,, + iK 4f(x, y)a 2 + iK6e+i6a2 = 0 (4.2)

a 1 (x = 0,y) = AI(y)

a 2 (X = O,y) = A 2 (y).

Although the linear part of the surface system is identical to its counterpart in the

Nonlinear Schr~dinger Equation, the nonlinear terms endow the surface system with

properties and behavior much unlike the Schrodinger Equation. The bottom evolution.

is given by Equation (3.50):

T " (,y,T) = (Mx + vy)

h(x,y,0) = J"t(x,y).

Equation (4.2) and Equation (4.3) comprise the full model. In Chapter 3 we gave

an estimate of the time discrepancy for the evolution of the surface and bottom. This



72

discrepancy suggests an effective decoupling of the fluid and sediment problem. which

permits an iterative solution to the full model. Specifically, begining with some initial

bottom configuration H(x, y), the field on the surface is solved: the flux velocity (,U,. v.)

is calculated, and the bottom is updated using the mass transport equation. With this

new bottom, the fluid quantities are solved for again and the process is repeated until

some T final.

The conditions for which the surface system and the mass transport equation are

stable enable us to discern the conditions for the overall stability of the iterative solution

of the model. At this point in time the evidence of the surface system's solution stability

comes from numerical calculations. Until the issue of stability of the surface system is

studied in detail, it shall be assumed the solutions are stable and in what follows, and

proceed to find conditions to be met by the mass transport equation so that the overall

iterative procedure is stable.

The mass transport equation, from Equation (3.50), is of the form

ahtx,y,T) K

OT - (i•+vy)inTZ2 withTE[O'oc)

h(x,y,0) = 'H(x,y). (4.4)

The properties of this quasi-linear hyperbolic equation are well known [62], and the ex-

istence and uniqueness of solutions is well established: provided the initial condition

h(x, y, 0) = Ht(x, y) is at least in the C' class of functions, and the characteristics are

nowhere parallel to the manifold on which the initial data is prescribed, we have either

solutions in the weak or strong sense, i.e., smooth, or shock-like. A shock solution can

either be prescribed as initial data, or can occur at some later time when the character-

istics cross in space-time. Regarding the problem in sedimentary transport, a shock-like

solution would make little sense as a solution. Since the possibility of such an outcome
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exists, it is worth reviewing the conditions for the formation of a shock, and its relevance

,o the problem of sedimentary structure formation. Equation (4.4) may be recast as

,h(-, y, T) -6T Oh Oh+

h(x,y,O) = 1-(x,y) (4.5)

assuming that the indicated differentiations can be performed. If in the above system we

identify c 8 ( ") - (c 1 ,c 2 ) as propagation speeds, we may reinterpret the problem

in terms of simple wave dynamics. Assuming the solution is wave-lke, it may be inferred

that

h - 7R(x - Tcj(h)) = 0(a) (4.6)

since vy = 0(a) the second term on the right hand side of Equation (4.5) affects the

outcome very minimally. Assume that R is differentiable. Using the implicit function

theorem

hT ,ch I + "R'lClhT

h, 1 + WcT" (4.7)

It is evident from this pair of equations that, for Clh > 0, if If' > 0 for all x, both hT and

h, shall remain bounded for all time. On the other hand, if Clh < 0 at some point, hT

and h. shall diverge as 1 + -C'ClhT - 0. The situation is the reverse if Cih < 0, of course.

In the sediment problem, as is evident from Figures 4.1 and 4.2, it is typical for cl to be

oscillatory in nature. Hence the characteristics have wave-like spatial dependence.

We need to reiterate the issue at hand: as the waves shoal, they "see" a bottom that

is essentially fixed. Only after the passage of many waves do we expect to see changes on

the bottom topography. Insofar as the solution of the model's system, we are concerned

with the issue of stability in the iterative solution of the surface/bottom system, which
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Figure 4.1: cl(T = 0) for bottom f(T = 0) = 0.01x. 3 = 0.0,,3, s = 0.2, a = 0.1,

w, = 1.2.

comprises the full model. We think of 7- as an entirely new initial condition as input to

the conservation law at each value of T. We may ask then, when do the characteristics

cross so that the solution is no longer valid? In what follows we think of 7R as an entirely

new initial condition and T as the time between any two iterates of the full model. Set

1 + )t'clhT = 0. (4.8)

If there is crossing of the characteristics, it shall occur at

1
T = -- ' (4.9),H'Clh"
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Figure 4.2: cl(T = 0), when f(' = 0) = O.Oly, 3 = 0.08, e = 0.2, & = 0.1, w, = 1.2.

For the two-dimensional case

cih = -7 1a'fi(h)- 72 a2f 2 (h),

yj = 4K' 2k3Hj3/jwj

13 = 1 3 k2h2 (4.10)

thus, crossing occurs when

T 2 _La.f 1(h) + -.2 a~f2(h)[. (4.11)

By assumption, H' = O(E) = 0(a). Since kj,wj,,K,H. are all 0(1), and 1j = 0(31/2)
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then -j = 0(33/2). Thus, an estimate for the time at which crossing may occur is

1
T = O(a)O(03z/) (4.12)

which can be quite a large interval assuming that ai I remains bounded and less than

one. This estimate applies to the three-dimensional case reasonably well since y variation

is O(a) smaller than x variations. Equation (4.12) gives an upper bound on the time

intervals between each iteration. Recall that we are considering each iterate as a new

initial condition, and that the drift velocities will be different at each time step. Hence,

if the upperbound in T given by Equation (4.12) is never reached -i.e., the model's

assumptions are never violated - the iteration procedure yields a stable result.

4.1 The Surface Equations

As mentioned earlier, the surface system is a new equation whose properties and structure

are presently unknown. In what follows, we present what we have been able to discern

thus far about the structure of this new system.

4.1.1 Hamiltonian Structure

The following scaling,

x - K 5(K6Eo) 1I2x y - K1/ 2(KrEo)1/4y A ,-- K5(K6EO) 1 /2  (4.13)

U (KsEo)T12 (K 6 Eo)P
2

,

shall be adopted in what follows in order to facilitate the derivation of the surface equation

Hamiltonian structure. For a flat bottom, the system is thus

u, - i u, + ie u*v = 0

vx - iK 2 vY + ie +AQXu2/2 = 0 (4.14)
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Assume compact support in y for the dynamical variables. Define the Lagrangian density,

£ = iu~u* - iuu + ivxv* - Vv - R[(u )2VC-eQxl] - Kiflu21- K 2 1VI (4.15)

where R? stands for "the real part of", and the canonical momenta

II1 = &
Siu"

112 = = V
(4.16)

= =

II = ac = iv.

The requirement that L = f Idy be stationary, yields the Euler-Lagrange equations,

which in turn lead to (4.14):

&£ d - iAQXU*v = 0

UU W- - lux, + K~uY - =
Y (4.17)

09Cv d i8C + 72vu e e+iA Q xu2/2 = 0

and its complex conjugates. The Hamiltonian H and its density W" are given by

H = J7-tdy

Rt = [(u*)2ve-AQX] + KIIu.12 + K21vY1 2 . (4.18)

Note that the Hamiltonian is not conserved, i.e.,

aL OH
-- - -- 0, (4.19)

except when AQ = 0. The Hamiltonian, in terms of the conjugate momenta is

It = 2i•[1•He-'QoI + KI 2 + K21 12y (4.20)

The Hamiltonian admits a Poisson structure: Defining the Poisson bracket as

r aAaB dA OB F OA B a Z OdB
{A, B} - dy[[8A&B- - -9A uu]+'c.c. + dy[ aA &B - o B + c.c. (4.21)

09U ~ 11 al, aal uO2 91
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so that the evolution of a dynamical variable A is given by

A, = {A, H}. (4.22)

In fact, Equation (4.14) is recovered if A is replaced by u and v in the above equation:

UX= {OH = ifweiAQXI

u=u,H1 = On -2 yy

= iu've-iAQa + iuyy

v,= {v, H} = 9112 - -i(II)2e+tAQh/2y-

= iu2e+'AQh/2 + ivYY. (4.23)

In addition,

III-, ={f H ) = , OR

112.={H 2 , H} = - (4.24)

yield the complex conjugate equations.

Equation (4.14) may be recast in the form of an autonomous system. For such a

system, the Hamiltonian is a conserved quatity. Let i: = ve-iAQ, and substitute in

Equation (4.14), resulting in

uz- iKluy, + iut  = 0

b, - iK 2 E'y, + iAQI + iu2 /2 = 0. (4.25)

The Hamiltonian corresponding to Equation (4.25) is

Ht = R[(u')2i] + K IuyI2 + K121 &Y12 + -AQIbI1/2. (4.26)
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As a check:

09H
U, = {u,71} u - iu*3 + iKiuYV

ýX = f f- iI.AQi - iu 2 /2 + iK 2 vYY. (4.27)

Hence, the above substitution leads to a Hamiltonian with the property

d'h
X = 0 (4.28)

for any AQ.

Another conserved quantity of this Hamiltonian can be shown to be

1(1u12 + I 12)X = -ýý(KIuyuu + K 2iyvi)y, (4.29)

where ! reads as "the imaginary part of".

4.1.2 An Exactly Solvable Case

When the bottom is flat, and the boundary conditions are constant, the surface system

becomes

a,, + iK 5e-ixaaa = 0

a2x + iK 6e+iza = 0(430)

ai(z =O,y) = Al

a 2(x = 0, y) = A 2 ,

where, Aj are constants. The above system is very familiar to the nonlinear optics

community-c.f. Arsmtrong et al. [63]. Replacing ai = Ai(x)expOi(z) in Equation (4.30)

changes the system to

Ai_-KsAIA 2 sinQ = 0
(4.31)

A2.+K6A2sinf = 0
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for the real part, and
01. + K5 A2 cos Q = 0

(4.32)
A202., + K6A cosI = 0

for the imaginary part, where Q = 20, - 01 + 6x. Combining the equations from the

imaginary part,

Q,, + 6 + [K6A2/A 2 - 2K 5 A2] cos 9 = 0. (4.33)

Thus, Equation (4.30) is equivalent to

A,, - K 5 A1A 2 sin Q = 0

A2, + K6 A• sin Q = 0

g., + 6 + [K6A /A2 - 2K 5A2] cosQ = 0

A,(0) = A 1

A1(0) = A 1

Q(0) = Q0. (4.34)

To continue, let

X = A2 sinQ (4.35)

Y = A2 cosQ (4.36)

Z = AP. (4.37)

Multiplying the second equation of Equation (4.34) by sin Q, using the third expression

of Equation (4.34) it can be discerned that

Xi = -K 6 Z - 6Y + 2K 5Y 2. (4.38)
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since X, = A2. sin it+ A2Q, cos Q. Multiplying the third expression of (4.34) by A2 sin QŽ.

Yt = 6X - 2K 5XY, (4.39)

after making use of the second equation in Equation (4.34). The Z variable may be

eliminated from Equation (4.38) by noting that from the real part of the original system

that conservation of energy is given by

K5 (X 2 + y 2 ) + K 6 Z = E0 . (4.40)

Eliminating Z using Equation (4.40), dividing Equation (4.38) by Equation (4.39), leads

to

dX K 5 (X 2 + 3Y 2 ) - 6Y - E0

d"Y (6 - 2KsY)X ' (4.41)

which may be used to investigate the structure of the phase plane of A2 . The dynamics of

A, follow immediately from the conservation of the energy constraint, Equation (4.40).

Three cases, depending on the size of the detuning parameter 6, are investigated. A plot

of the detuning parameter as a function of frequency and 3 is shown in Figure 4.3, for

the dispersion relation given by Equation (2.46). When 6/2v'T-0 0, the phase plane

is shown in Figure 4.4. Note that dX/dY = 0 and X = 0 gives the two centers. at

(X, Y) = (0, ±v'E'o/]3./v'Th). Setting Y = 0, dX/dY = 0 gives the radius of the bounding

circle, at V/E'o0/ 1VK, beyond which the orbits diverge. Additionally, there are two saddle

points at (X, Y) = (±v-"0"/vh'S, 0). Motion along the limiting circle takes place in such

a way that A1 = 0, and A2 = Eo/IVyr. If we start, for example, with A, # 0 and

A2 = 0, motion in the plane takes place along the line Y = 0 up to the limiting curve,

the phase Q is then equal to 7r/2. From the imaginary part of the original system, it may

be deduced that the variation of Q in this limit is described by

f, - 2KE 1 / 2 cos Q = 0. (4.42)
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0 4

Figure 4.3: Detuning parameter dependence on w, and 3.

The transition from the state sin Q = 1 to sin Q = -1 occurs along the limiting circle.

The distance x at which this transition occurs is infinite, but it can be estimated by

solving Equation (4.42). The solution is

= tan-'[exp(-2KsE0'2 x)tan.Qo], (4.43)

and hence an estimate of the spatial length at which the energy of the first harmonic

makes an almost complete transition to the second harmonic is

L 2z 1/2KsE/ 2 , (4.44)

which shall subsequently be seen as related to the "interaction length". The variation of

the amplitude of A2 along Y = 0 may be discerned from

A2= KA - Eo, (4.45)
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Figure 4.4: Phase plane for A2 for 6 - 0. X axis is vertical.

which is obtained by eliminating Z from Equation (4.38), and making use of the energy

relationship.

The solution of Equation (4.45) is

A2 = (Eo/K5s) tanh[K!5 E0 2 (x - XO)j, (4.46)

with A 2 = (Eo/K.)1/ 2 tanh[(KsEo) 1 /2Xo). At the begining of the growth process, A1 >

A2 so that sin Q? = 1 and the growth of the second mode is independent of A2 . With

the solution of A2 in hand, using Equations (4.39) and the first expression of Equation

(4.34), it may be shown that

Al(x) =A sech1-(x - xo). (4.47)I 2 i1 2 1/2
V1-tanh [AKs E0 X0]

From this solution it is concluded that irreversible energy conversion takes place for

6 = 0. This solution is not stable, however, since the stationary states are reached by

motion along the limiting curve on the phase plane. The smallest of 6 invariably results

in motion along homoclinic orbits with consequent of beat in the amplitude of A, and
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A 2 .

For the case b 4 0, but small compared to 2EO1 2 , the curves have similar structure

to the case previously discussed. The phase is desr-:bed by

Q., + 6 - 2K 5 EO/ 2 cosQ = 0. (4.48)

Consequently, the interaction length is decreased:

L = (4.49)
14K5  

2  62

The centers are now at (X,Y) -(0 6 L'1 /and the lineY=0isno

longer the line of symmetry. Also, the line Y = does not generally intersect the6K 5

limiting circle, as can be seen in Figure 4.5. Instead of two pairs of stationary solutions,

70 1

'I' Q

Figure 4.5: Phase plane for A2 for 6/2Eý/2 < 1. X axis is vertical.

only one is possible, and the energy is concentrated mainly in the lower mode. The two

modes interact weakly, and the spatial beats get smaller and shallower as the detuning

paramenter is increased. In fact, when 6/2E/ 2 >1 , AI(x) - A 1 , and A2 (0) = A 2 . the



85

first two terms in Equation (4.33) are dominant, so that the phase is

Q = bx -4- 7r/2. (4.50)

Substituting the above expression into the second expression of Equation (4.34) we obtain

A2 = A 2 + LA2 sin hx. (4.51)

The phase portrait for this case is shown in Figure 4.6.

0; 1

1/2

Figure 4.6: Phase plane for A2 for 612E8' 2 > 1. X axis is vertical.

Note that of the three cases considered here, the only ones physically relevant Lo the

sandbar generation problem are the first two cases. The large detuning parameter case

violates assumptions on the size of the wavenumber/frequency in the model. However,

much is to be learned about the surface system from looking at the high frequency case

in detail.

When w, is large, or equivalently, when 6 is large. the amount of energy from the first

mode transferred to the second one may be quzitp small. As was just mentioned. in such

case the first mode has nearly constant amplitude. Assume that the boundary conditions
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are constant, i.e. aj(O) = Aj. Thus, al(x) -, A 1 , and the second mode expression of

Equation (4.2) may be integrated, yielding

a2 (x) = -KAle'. (4.52)

Substituting Equation (4.52) into the first mode equation

al,( x) .zz ---L-al A1 2 e-b": (4.53)

which can readily be integrated to yield

ai(x) = Ale"X, (4.54)

where a = K 5 K 6/16A 2. Thus a 1 (x) is approximately sinusoidal with a wavelength

proportional to IA2 .

For a nonzero bottom an exact solution is not possible. Consider, however, the case

Alx- KsAIA 2 sin f+ xiAl = 0 (4.53)

A2,+K 6 A~sinQ+Y,2 A2 = 0

where )(j represent constants. We still cannot solve this system analytically, unless

XI = X2 = x, in which case, conservation of energy is given by

KA5 A2 + Ks6 A2 = Eoe-2xx. (4.56)

Introducing new variables

Xc 1 ~/ 2 -xx

Y = 1/2Jx
V = "Eý/•× (4.57)

and the reduced distance

= 2E 1/ 2 (1 - (4.58)



87

assuming 6 = 0, we obtain, using Equation (4.56) the system's phase plane equation

dX 1 - 2  3f-22--- = (4.59)
dY' XY

which has the same structure in the phase plane as that shown in Figure 4.4. The

important distinction is that ý is related nonlinearly to x. Whence, the damping of the

waves is characterized by

x -/(25sE•/ 2 ). (4.60)

For j < 1, there is weak damping and the waves travel a considerable distance before the

energy is fully dissipated. On the other hand, if j > 1, only a small arc of the trajectory

in phase plane is traversed. The wave substantially attenuates in a short distance. The

relevant case, at least approximately, to the oceanic problem considered in this study

is the former case, in which the size of the bottom makes the coefficient analogous to

X in the above presentation of 0(a) in size relative to the other terms in Equation (4.55).

With an understanding of the dynamics of the system, we now present the analytical

solution to this special case, Equation (4.30). Our development follows c!osely Armstrong

et al. [63]. For the sake of tidiness, let us scale Equations(4.30), using

wai(x)I

v(X) = a2(X)I

S= Ks fKz
6

AQ KsbV/••E. (4.61)

In these new variables, conservation of energy assumes the simple form

v 2(x) + w2 (X) = 1 (4.62)
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and Equation (4.30) is expressed as

dw.T = -wvsinQ

dv 2-- = w2 sinQl
di
n = AQ + cot Q d-(ln(w2v)). (4.63)

di WY

= 20 1(i) - 0 2 (l) -4- AQi here. For AQ = 0, i.e. perfect phase match, Equation (4.63)

provides another constant of integration

r = w2 v cosQ = w2 (O)v(0) costf(0). (4.64)

Thus, making use of this constant of integration, and conservation of energy, it readily

follows from Equation (4.63) that

dv
2

di = ±2[1,2(1 - v2)2 - F2]1/ 2, (4.65)

with the sign being determined by the sign of sinQ(O). Hence

[,(X) d(v) 2  (4.66)S= 2.(0) [V2(1 - V2)2 - r2]1/2

which is the Complete Elliptic Integral. Since v is real and less than or equal to 1. v 2 is

constrained to move between the two lowest roots of v2(1 - v2 )2 
- r 2 . Call these va < vb.

We then arrive at a general definition for the interaction length-c.f. Equation (4.44)-

which is the spatial expanse in which the solution goes from one root to the other.

L b d(v)2 -(-7

V2 [v2(1 - v 2 ) 2 - (4.67r]

If the boundary conditions are such that r = 0, v.= 0, v• = 1, and Lb - oc, the

solutions would be

VF=o = tanh(1 + io)
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wr=0 = sech(i + i 0 ). (4.68)

The case io = 0 corresponds to A2 = 0. On the other hand, if A, = 0. then i0 - 0c.

If both A. 5 0 and 02(0) - 201(0) = ±+r/2, depending orI sinQ(O) = ±1, the second

harmonic or the fundamental gets amplified first. If the fundamental gets amplified first

(.io < 0), the second harmonic decreases to zero and then increases until all the energy

is in the second harmonic. If the second harmonic is amplified first (.o > 0), there is

complete energy conversion.

To write down the explicit solutions, define v2 > V > v", the third root of

v2 (1- v2 )2 - r2 = 0. (4.69)

Let

(,2 va2)2 2)

(2 v-Va
b a

be the argument and modulus, then

-41 [ Y(1) dy ( .1
'•- •/ Vff-) ly(o) [(1- y2)(1- y2y2)]1/2

and the amplitude squared solutions are, in terms of Jacobi Elliptic functions "sn",

2(i) = V2 + (V2 2 )sn2[(2 _ V2)1/ 2(i + io);-]

w 2(i) = I v2 (i), (4.72)

with i0 being dptermined by the boundary condition y2 (0) and the value of -y. Note that

max = 4/27, as determined from Equation (4.72) and Equation (4.69).

The solutions for imperfect phase matching, AQ A 0, can be found, using variation
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of parameters. Equation (4.64) is now

rAQ = w2vcos 0 + 2AQv2, (4.73)

so that

FAQ = F + 1AQv2(0). (4.74)
2

Equation (4.66) in this instance is given by

1 [,() d(v) 2

2 JV2(o) [1,2(1 - V2 )2 _ [r 2 _ IAQ(v 2 
- v2(0))12]1/ 2  (4.75)

The three roots are given by
2(- v2 ) 2 

- [F 2 
- 1AQ(V2 - v2(0))] 2  0. (4.76)

2

The interaction length is now

= 2K, 2 -(4.77)

where

K = K(-y) = J (I - Y2 sin2 y)- 1 /2dy (4.78)

is the Complete Elliptic Integral. In terms of the unscaled variables,

(v~-2K
LA = /2Ks( KEo)1/2" (4.79)

By way of illustration, the case when A, = 0.5 and A 2 = 0, yields a particularly

simple expression. In this case FAQ = 0; Va = 0 = -ia, v, = 1/vb, and -Y = vb. Let
m 6=v. Since v = V2= (1+ (IQ)2)1/2 - , then

LA = 2K(m),

v2 = msn 2 [m-1/2•;m]. (4.80)

The solution for small AQ and large AQ is graphically depicted in Figure 4.7. In
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the first case, vb and LA are relatively insensitive to AQ and substantial power transfer

occurs, the interaction length is very large. On the other hand, for AQ > 1, there is less

power transfer and the interaction length is shorter. Figure 4.8 shows how the interaction

length varies nonlinearly with m (and hence with AQ), and in Figure 4.9 and Figure 4.10

illustrate the dependence of the interaction length on the size of the nonlinear parameter

a, and the dispersion parameter 3. The relevant size of the parameters a and 3 in the

oceanic application under consideration is as high as 0.15 for a, and 0.005 < /3 < 0.15.

Hence, from the graphs it may be inferred that the interaction length is more sensitive

to dispersion than to nonlinearity for the above-mentioned ranges of a and i3.

1.0 _

0.8

w )0.6

0.4

S/ "\\

02 N

0.0
0.0 0.7 1.5 22 2.9 3.7

Figure 4.7: v2 dependence on the detuning parameter. In all cases w2(x = 0) = 1. The

interaction length and the power transferred to v2 decreases as AQ increases.

As a way to assess the evolution of waves with periodicity in the longshore direction,
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Figure 4.8: Interaction length dependence on the nonlinear parameter AQ.

suppose

ai(x,y) = u(x.,y)ei(klx-u•t+ilv)

a2 (X,Y) = v(X,y)ei(k2X-W2t+12Y) (4.81)

Then the system (4.2) is now

u, + il Kju + iKsu*ve-'(7p+bx) = 0 (4.82)

v, + il'K 2 v + iK 6 u2e+i(7Iy+b) = 0, (4.83)

where 12 = - 2 11, which can be zero. Consideration shall be made here to the high

frequency case. For w. large, u(x, y) ,' u°. Hence Equation (4.83) may be integrated,
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Figure 4.9: Interaction length dependence on the nonlinear parameter a.

yielding

K 6 u2ei(Cy+bx)v 6 +1•K 2  (.4)

assuming v(x = 0, y) = 0 and u(x = Oy) = u0 constant. Using this expression in

Equation (4.82),

u(X,y) = u° exp[-il Kjx + i b12(4.85)

Hence v oscillates with lines of constant phase normal to the tan-(.+) direction, where

the angle is taken with respect to the shoreward direction. When 12 = 21, exactly, the

direction of constant phase orthogonals is the shoreward direction. On the other hand,

u oscillates in the x direction, with a repetition length

L +l {=bs+ 6I u° I - (6 + 12 K 2 )l) 12}K (4.86)2 1 2 . 12 ," -
2ir

Furthermore, v can develop a singularity when

6 + 1A'2 = 0, (4.87)
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Figure 4.10: Interaction length dependence on thp dispersion parameter 3.

that is, when l 2 = ±t:./TfK2 (note that <K 0). In terms of the y component of the

wavenumber, the singularity occurs when

12 = ± 21k2  (4.88)

An 12 of such value is not at all unreasonable to consider. A singularity must be in-

vestigated much further, since it is most likely a result of the method of analysis used

here. However, there is a change in sign in v on either side of the location at which the

singularity is predicted.

Yet another interesting feature is the situation when

u = (6 + 12K 2 ) jKi/KsK6 (4.89)

again, a reasonable value. In such an event, the modulation of u practically disappears.

Then

u(Xy) - u = ±V ( + 12K2 )12 K1 /KsK 6 (4.90)
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and
12 A- e' (6.+yy)

V(Xy) , - K5 (4.91)
K 5

which is a simple sine wave. Hence, one could conceivably use modulations in the y

direction to nonlinearly produce linear sine wave signals of the second harmonic with

amplitude given by 112. If 12 = 21, exactly, the wave oscillates in the shoreward direction.

Carrying out this high frequency analysis further, we can consider the effect of the

bottom topography under special circumstances: the case when f(x, y) = f(y) leads in

a straight-forward manner to

K6u 2 ei(Ty+bx)

2K2 + 1 2 + K 4 f(y)' (4.92)

again, assuming v(x = 0, y) = 0 and u(x = 0, y) = u° constant, and

o KsK6IuO l 2 z

u(x, y) = u° exp[-il2 Kix + I + U + 1 2 X)(4.93)b+ K2 2 + KJf(y)"

Thus, the effect of the bottom in this case is to change the amplitude of v, and at the

same time modulate the oscillations of u. Again, the possibility of a singularity and a

change in sign in v exists.

Finally, the same method may be employed to assess the effect of a mildly sloping

bottom on the high frequency solution. Assume f(x, y) = vx/2, where v is small. The

same procedure leads to

(uo)2 K 6 ei(7y•+x)

6 + K 2122K 4 z
[1 - i(b + K 2/2)2 {(6 + K 212)2X2/2 + i(6 + K22 12)z -1]e-iK411'

U U exp{-i(K1 1I

UO 12 Ks5KA6  _ (K 1 2 _K4I A5A6 2+ K21)2) (6 + K 21•) 2

(b~ IKK~ (6+ K 2 12)T 2  (494

exp- 2102 K4h56v (b + K212 )494
(6 + K 2 )3 (x- 2
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The result is only valid for K 4vx 2 < 1. That is, since K4 is of the same order as k2s. it is

valid for x < O(1/v1'-2Fv). In order to discern what is fundamentally different about the

sloping case, consider the situation in which u° has no y dependence, so that Equation

(4.94) has the form

(u°)2 K 6 eib~x

[ 2K 4 v f 62x 2 - 1)]e-iK4•X 2

,.14-xpi 6°2KsK__ -6x/,-i(3 u!hhh

uoexpfiuo 2 K 5K~xb (K3 -I012 )vx 2}

*- 12 K 4 K5~KrP X( 6 2X2 /e bi =b222 (4.95)

From Equation (4.95) it is readily apparent that v oscillates proportionally to f'br. its

maximum amplitude I/K6 times smaller than u2 . The phase will drift quadratically with

distance and proportionally to K 4 '. The amplitude drops linearly at a rate proportional

to the size of K 4 v and K3v; the wave decays exponentially at a rate controlled by the last

exponential in the above expression. To properly interpret the decay, recall that 161 >» I

and 6 is strictly negative in this analysis. The second term in the exponential implies

that decay/blow up would be a possible outcome of the original model. However. this

is an artifice of the present analysis. If the assumption u(z) - constant is violated, the

above expressions are not valid. Thus, for our interpretation to be valid, it is required

that 21 u 12 K 4 K 5Krvx; 6 3 < 1.

A very important question that arises in the applicability of slightly resonant inter-

acting triad expansion techniques to oceanic waves, is that we may be neglecting very

important side-band modulations. These can be producing interesting structure. control-
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ling the stability of the primary waves, or affecting very minimally the structure of the

evolving waves. A general result on this issue is forthcoming. but for now we Eimit our

attention to the high frequency case. The problem of bands, rather than isolated modes.

and its effect on the evolution of individual waves has been examined by Hasselmann [64]

in the context of deep oceanic waves. We would like to find the effect of side bands on

the main waves for the shallow water case. The following analysis follows closely work

done by Brekhovskikh and Goncharov (65] in connection with this issue.

Firstly, the modal expansion is replaced by the more familiar expression for the lowest

order velocity

uo(x, t) = aw(x)e-iwtdL (4.96)

where aw(x) - a(x. w), and a' (x) = a-w(x) since u0 is real. Assume aw = pw exp(ikx),

where kw = k(.) is found via the dispersion relation. Again reality means that k, = k_w

and p' = p-w. Substituting Equation (4.96) into the original equations and using the

compatibility conditions, an expression for the amplitude of the incident waves is

-9X pw = -- 0 0W] PqPs exp( - i AqSw )dq (4.97)

where s = w - q, and Aq.W = q + s -kw. If the incoming harmonic wave u(O, t) =

aj(O)e-'w1t + c.c., i.e. pw(O) = al(O)b(w - w1 ) + a*(O)b(w + w1 ), the spectrum of

u(x,t) remains discrete at any time: the only non-zero components are w, = n" 1 .

k, = k(w,),n = ±1,±2,.-- and

aw(x) = an(x)6(w - wn). (4.98)
n

Then Equation (4.97) yields

- 19an = -- lawnEa ale , (4.99)
')X
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l=n-m, /mIn = km + ki - kn, an =aa, and a0 =0.

Taking w, as the principal harmonic and bw as the width of the spectral band, we

extend Equation (4.30) to include the interactions of spectral components of the wave

train with long-wavelength waves. Except for a constant multiplying the integral, the

spectral amplitude equation is

a p(W) = -law I [pwl+ýpw_wl_w1( + +

A± = kw• :F kLA• +C ku. +ý:FL; zz kw• : k.wl ± dk I 67

dk
kkw, ±- 2W, w) = kw - cg=w [c•-1(0) - c;-1 w = Aw (4.100)

where c9 is the group velocity and Cph is the phase velocity. Approximating.

PL,+c " Pwl+W+c • Pw1 ,

P-1W+")+C P-Wl+ý P-W1 . (4.101)

the equation for the amplitude is

a2
--x pw • -iaw pw1  Ie' Awz .. (4.102)

As was done in the discrete case, assume the frequency is sufficiently high so that pw1 '

constant. Thus,

pw(x) 2 -o w-pw- 1 2i p ••AwzA.: = (4.103)Aw[cph (0) -- cg-(WO ]

The following equation for pw corresponds to such an interaction:

PP Iapw(ApI)2 (4.104)
pw= lawJ P0Cphe r-

where I w - L.; I - Aw. Let a, = pWAw stand for the amplitude of the principal harm-

monic. Then, takii~g into account the term corresponding to the interactions with the
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second harmonic, we obtain, instead of Equation (4.53).

•a a= ia2":21a,1 2 {A- 1 + -[c7-h'(0)- c-(1 )]-}a,. (4.105)

Its solution is a, = al(O)eix, corresponding to waves with "'spatial" shift of a =

-a 2 LO2ja I{A-1 + -w[c•-(O) - c' 1 (1)]-}. Hence. in the high frequency the main

difference between the discrete and the banded spectrum case is that the latter has an

additional term in the nonlinear shift as cow pared with the case of Equation (4.53).

4.2 Remarks

The conditions for the stability of the surface system and of the full model, as of this

writing, have not been analyzed in detail. However, it is possible to infer from the results

of this chapter that the stability of the surface system does not depend on the frequency

of the water waves since only weak resonance is possible, which in turn means that less

energy is shifted from the lower modes to the higher ones the higher the frequency of the

fundamental mode.

Evidence from numerical calculations and of our preliminary analytical work on the

subject suggests that the stability is controlled by the size of a, by the possibility of a

singularity in the denominators of the coefficients K5 and K6 by the right combination

of parameters-see Figures 5.3 and 5.4- or by the choice of boundary conditions Ai .

As shall be shown in Chapter 6, there are a number of ways in which refraction occurs

in the modes. The model's assumptions places a restriction on the degree of y dependence

of the solutions, and care must be exercised so as to not violate the assumption, especially

when the domain involved is large. It may be possible, however, even when weak y

dependence assumptions are not violated, for the solutions to lose their stability due to

severe refraction. At a later stage in this study we shall pursue this issue with the hopes



100

of arriving at an estimate of when and how this form of instability occurs.



Chapter 5

Numerical Solution of the Model

This chapter is devoted to the details of the numerical solution of the full system and

to a performance evaluation of the various computational schemes. As mentioned previ-

ously, the two disparate time scales effectively decouple the fluid and sediment problems,

enabling us to solve the full model iteratively. The input to the model is comprised of an

initial bottom configuration and the mode amplitudes at the line x = 0. The required

dynamical parameters are the fundamental frequency, an estimate of the size of a and

/3, and the dimensions of the rectangular patch, 0 > x > M, 0 > y _> N, of ocean on

which the solution is to be computed.

Finite difference techniques were adopted in this study for a number of reasons, the

primary one being that they are very well suited for the numerical solution of the hyper-

bolic equation of the type represented by ihe mass transport equation. Other reasons

have to do with practicality: there are 3 equations to implement (the mass transport

equation plus the two-component surface system), which are most conveniently solved on

the same grid. In addition, synthetic boundary conditions on the lateral boundaries were

found to be easily handled using finite difference techniques. In this study a uniform grid

was found to be adequate for our purposes and hence, used exclusively.

101
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5.1 Implementation of the Mass Transport Equation

The mass transport equation shall be implemented numerically using a Two-Step Lax-

Wendroff scheme, which is second order accurate in time and space. Since this technique

is very well established, we shall not report on such standard issues as consistency.

convergence, and uniqueness. The reader is directed to Smith [66] for those details.

We shall define the following difference operators:

Aq = u(qj+l) - u(qj) forward difference

Vq = u(qj) - u(qj.-1 ) backward difference
(5.1)

bq= u(q,+1 / 2 ) - u(qj3 ./ 2 ) central difference

Aq - u(qj+i) + u(qj) forward average

in the independent variable q, say. The physical space is given by R?2 x T - [0 < x <

M,0 < y :_ N]x {T > 0}. Define 1Z xTA = (x,,y,)xT, = (rAx,sAy)xn nAT E 1.,2 xT.

Furthermore, there are integers m and n, such that M = mAx, N = nAy.

Equation (3.50) is approximated by the following computational module:

n+1/2 1 AT ATh +12="(A, + ay)h + -•A;,ji + 2-•AYV
r+/ AT AT A

hn+ = hn + AŽT xTI + Ae•TL'V (5.2)

on IZ2 x TA. The module is illustrated in Figure 5.1 for one space dimension.

For the sake of clarity, the stability criteria shall be established in the shoreward

direction only. Since ix = Plhhz substituting in Equation (5.2) yields

= - + V)h - 2(x - V,)h] (5.3)

where • = -PhAT/ 2 Ax. A local stability criteria may be established by replacing

h = ' exp(irAx) in Equation (5.3), from which it follows that the growth factor is such
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Figure 5.1: Computational module for the mass transport equation.

that

c12 = 1 -(1 - )(1 -cos(rtAx) 2. (5.4)

and formal linearized stability shall result if 1, which restricts .2 _ 1

Usin, 'te same argument the stability criterion in the span-wise direction can be

found, so that the stability of Equation (5.2) in two space dimensions requires that

= -(phhz.AT/2Ax,vhhYAT/2Ay) be less than one in component form. Since

2 4 32 k3

Ph = -_ E -'(1- 32 h2k2/2)HIaI 2

j=l

2 -- k _ 32 h2 k2/2)Jj[IR j - IyRj, (5.5)
Vh = - E Ujw

where I. and R) are respectively the real and imaginary parts of a,. It is possible to show

that the maximum value attained by either 11'h 1, or I Vh j2 is of the order of 16f133 a 14 .



104

Hence, for stability the grid size is determined by the constraint

AT < 1331 2la, A2, (5.6)
Ax - 4

a result which sits well with the need to be economical about computer resources and

that, as will be referred to subsequently, will not conflict with the stability criteria of

the overall iterative scheme of the full model. Thus, in component form, for ý, < 1, and

assuming I ajI < 1 over the whole domain,

AT S< ,3-3a, (5.7)
Ax -

and for •y < 1, the same argument leads to

ATA T < 3-3.(5 8Ay- (5.8)
AY -

Dissipation is known to occur except when 2 = 1. The effect, however, can be quite

small-fourth order in Ax-if the wavelengths are restricted to being much greater than

the grid size [66].

5.2 The Surface Equations

5.2.1 Numerical Solution of the Two-dimensional Surface System

The numerical solution of the two-dimensional surface system

= -- K 3f(X)ai - IK 5e ala 2

+ibx 2a2 " = -iK 4 f(x)a 2 - iK6 e a1

a,(x=0) = A,

a2 (x =0) = A2 , (5.9)

where A1 and A 2 are constants, shall be used later in the evaluation of the imple-
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mentation of the three-dimensional surface system. A standard fourth-order explicit

Runge-Kutta scheme

1
o,+ = or + 1(P 1 + 2P 2 + 2P 3 + P 4 )

6

P, = AxF(Ok,x,)
1 1

P 2  = AxF(, + IPi.x + IAx)
2 2

P 3 = AxF(V +- P 2 , X + Ax)
2 2

P 4 = AxF(ý, + P 3 , x, + Ax), (5.10)

where F is the right hand side of Equation (5.9), and the vector 0, [al(x,). a2 (xr)], was

used to numerically solve this system. For details on the applicability of such a scheme

to the solution of Equation (5.9) we refer the reader to Boczar-Karakiewicz, Bona. and

Cohen (1].

5.2.2 The Three-Dimensional Model

For the surface equations, we rewrite Equation (4.2)

ax- iKjajyy + iK 3 f(X,y)a1  = -iKse-4 a~a2

a2r - iK 2 a2 , + iK 4f(x,y)a2 = -iK 6e+ 6 zal

aj(x = O,y) = AI(y)

a2(x = 0,y) = A 2 (y)5.11)

aly(x,y = O) = 0

al(x,y = 0) = 0

a2 ,(x,y= M) = 0

a2y(x,y = M) = 0

to separate the linear and nonlinear parts. The first two boundary conditions are in-

herent in the physics of the problem. The remaining boundary conditions are artificial.
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These Neumann boundary conditions, combined with a computational procedure that

will be explained presently, ensures that the overall structure of the solutions shall remain

negligibly affected by the choice of lateral boundary conditions. We call this technique

the "zero-flux procedure".

In order to explain why this procedure is needed, let us spell out what sort of problem

we are faced with: Since we need to compute a solution over a finite domain, care

must be exercised in imposing boundary conditions on the lateral sides so that we avoid

the introduction of structure in the solution that is strictly mathematical rather than

physical' in nature. To avoid this situation we use appropriate boundary conditions along

the lateral sides, and in addition, place restrictions on the initial bottom configuration

and the boundary condition at x = 0 so that we can compute an oceanic event on a

swath of what amounts to be an effectively unbounded domain. We have found that

this zero flux procedure is superior to other synthetic boundary conditions in minimizing

unwanted structure in the solutions.

The Neumann boundary conditions make the problem well-posed, however, by them-

selves, would introduce a great deal of structure. Physically, these boundary conditions

correspond to placing hard barriers on the lateral sides of the domain. A posteriori we

know that the solution to the model is two dimensional if neither the bottom nor the

boundary condition at z = 0 has y dependence. In such a case the zero flux condition

on the lateral sides has no effect on the solution over any part of the domain, i.e., it does

not add y dependence to the solution. We perform the calculation of the system over

a computational domain which we divide into three regions. The large central region,

flanked by two sufficiently wide lateral strips, is one in which y variation in the initial

'A possible way to compute a solution of the problem over an effectively unbounded domain over a

finite grid is to impose periodic boundary conditions. However, periodicity imposes unwanted symmetries
on the structure of the computed solutions.
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bottom or in the boundary condition at x = 0 is possible. In the lateral strips no y

dependence in the above mentioned quantities is permitted. The solution in these lateral

strips is discarded. The initial bottom and the boundary condition at x = 0 are con-

nected smoothly in all three regions so that a minimal amount of structure is introduced

in the solutions. The size of the lateral strips is determined by what amounts to an

educated guess.

An efficient, simple, and sufficiently accurate method to implement the above non-

stiff, "locally" nonlinear system numerically is now the focus of our attention. Several

issues have motivated the particular choice of scheme: (1) The accuracy requirements

are not very sophisticated, since we wish to explore a phenomenological question rather

than achieve engineering accuracy; (2) a uniform grid is preferred over a variable one.

so that both the surface and mass transport equations may be easily computed on the

same grid; (3) the computational domain is fairly large for the sort of problem presented

in this study. The method presented here has, among its best features, low storage

requirements and high speed as measured by its low operation count; it is easy to imple-

ment on conventional hardware using recursive data structures, and to a certain extent.

parallelizable on vector machines.

Define the following vectors, 2 with all K's real:

k = i[Ki,K 2]T

kf = if(x,y)[K3 ,K 4]T

S= [ai(xry)a 2(xy)IT EC 2  (5.12)

with (x, y) E 7Z2, so that the system, Equation (5.11), is now recast on the discrete grid

2 The superscript T means "transpose" in what folows.
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7Z as

[0, - k +kfo -- b(x,y,,(5.13)

with the linear part on the left hand side and the nonlinear terms on the right of the

equals sign, plus boundary conditions,

O = 0 on y=O, y=N (5.14)

0= 00 onx=O,

The term b(x, 0) represents the nonlinear terms. Succinctly, the above equation may be

written as

£• = b (5.15)

where C is the linear operator. Let L be a suitable discretization of such linear operator.

Suppose the value of the vector 0 at level r for all s is known. Making use of fixed

point methods the value of the vector at level r + 1 may be found. Computationally, the

calculation is performed in two steps: let ( be the index of the iteration and let d be an

intermediate result. Then the following computational scheme is proposed:

LO = b(x, y, /)

L 0+' = b (x, y,•) (5.16)

Formally, Equation (5.16) is equivalent to

L -•+t = b(Xy, '). (5.17)

To start the iteration, the value of the field variables at the rth level in x is used, i.e.,

e = 0. The condition for convergence of Equation (5.16) is f, :Id by appealing to the

fixed point theorem.
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For the purpose of determining the convergence criteria, define C. a region in C4 . the

generalization of the four dimensional real space to complex variables. Let 4) and h E C

be two vectors in that space. Hence, the derivative of A with respect to <k is defined as

A4I, =j(4) = aAi

3(4) 9 " (.5.18)

If the second derivative is continuous for all 4) E C, then it satisfies

A"(41, h, h) 11• R 11 h 11' (5.19)

for all 4).

Furthermore, let 11 " 11p, with p = 1,2,oc. represent the induced norms

L = max,<, I,{Z I A,il} L2  = i Aij(A'}1/I E (5.20)
L= max, <i<{Z,, IA }.

Finally, define a super-system on 7Z as

[0,-KQyy+Kf]4 = B(x,y,4)) (5.21)

plus boundary conditions,

4 = 0 on y=0, y=N
(5.22)

4) = ,0 on x=O

composed of (5.11) and its complex conjugate, with

K = [k,k*]TEC

Kf(x,y) = [kf. kf*]Tr- ,

4) = [ai(x,y),a 2(x,y),a*(x,y),a'(xy)]T EC. (5.23)

Let L be the resulting discrete operator of the super-system, composed of L and its

complex conjugate. Choosing L non-singular (hence L is non-singular), and multiplying
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both sides of (5.21) by L- 1 .

-PI+1 A(x.y, '). (5.24)

Define the iteration discrepancy as

II 6 l~ l lp-ll l*ip - I - (5.25)

Appealing to the Fixed Point Theorem, it can be barmised that

11 b-9-'+ lip 11I A(4ý 1) - A(4PI-1) lip

SII J( ''-)• 1pII:5 J( 'I -) 4Ilp1l 64 lip

11 IIJ(41-1) I~pIl j(1ý1-2)IlpI1 b4,1 lip-<'

k-1

R 1- II J('V) I1lI, 6V lip, (5.26)
1=0

provided

0 <11 J(ý'•) lip< z.(5.27)

Equation (5.27) is in fact the convergence criteria for the iteration process.

To establish an estimate of the rate of convergence, let r > 0 be given such that the

set of vectors S = {4 :11 4 - s lp< r} contains a fixed point s of A(s), i.e.,

s = 401 = rim A($ 1 ) = A(s). (5.28)
00c 1-00

Further, let S C C, J(s) continuous on S and 11 J(s) lip< 1. Then there exists an

6 > 0 such that the fixed point iteration is convergent whenever 11 0 - s sp< E. Define

11 e1+1 lip, the measure of difference between the (I + 1)th iterate and the root. Hence

11 e+ 11p=11 41V+1 - s l1;.11 J(s)e' + A"((; et ,eL) I1p•<l J(s)e' 11 II el 112 . (5.29)
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Quadratic convergence is possible if J(s) 0.

lim II e l < R. (5.:30)11- e lie lp -

For the problem in question, however, the best rate of convergence will be linear since

J(s) 5 0:

l-- i elip' <1 J(s)II,- (5-31)

A measure of resources required in the computation is the size of the resulting ma-

trix problem. The slightly better flexibility in the choice of discretization for the linear

operator L is the key advantage of this method over others. The most economical dis-

cretizations are those that lead to a tri-diagonal or quinta-diagonal matrix. In our study

3 1 k_
L ;r-oA)-r _ 2 + kf3+ 1 )0 , (5.32)

2Ax T 2Ax r A!J (5.32)

which leads to an n x n tri-diagonal matrix. Its computational module is illustrated in

Figure 5.2. and is commonly known as the Douglas scheme. L has eigenvalues

x

r+J _________

r

r-I

s-i s s+ u y

Figure 5.2: Cornfputational module for the linear operator of the surface system.
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A, =-(3+2p+2Axkf)+2pcos[-n-'] s = 1.---n, (5.33)

and the eigenfunctions are given by

{si .. .r ,si 2sr sT }Tni l -,sn~l ,**,sin -- } s= 1,...n. (5.34)

Furthermore, the operator L is diagonally dominant, since

n+1

E ILj _ILjI i = 1,...n (5.35)
J~i

the L1j's being the entries of the matrix L, and non-singular since

Li j Lij~i >0 i>= 0.n- 1

ILiil L -£.+1+ Lij-ll LjjilLji-1 00 i=2,..-n- 1

IL':. > I i = 2,...n. (5.36)

If 4 = •reio, where 0 = azAys, and p 2 A k, upon substituting these quantities in L

the magnification factor is

- )1 +2 V1 - 2p(1 - cos0) - 2Axkf}, (5.37)

from which it is clear that _I I 1. Thus the linear operator is unconditionally stable.

An estimate of the accuracy of the discretization of the linear operator, and a check

on its consistency with the continuous operator on the grid, is given by

Ax 2  yh,
(L -I£)O = -A-X2.. + k 12 O,-YY +" (5.38)

2 12

where £ is the continuous linear operator. Equation (5.38) implies that the scheme is

O(Ax2 + Ay 2) accurate.

This order of accuracy is an upper-bound on the accuracy of the overall scheme, hence

attempting to reduce the error 11 elI1 much below this is pointless. Since the real root is
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not known a priori, the iteration procedure is carried out until we are safely below the

above-quoted error, but not much beyond that. This, in effect, is the criteria used in the

code for stopping the root-finding iteration procedure.

Consistency of the discretization is readily established by comparing the continuous

problem with its discretization in the limit as the grid size gets smaller. It may be shown

that the discretization approaches the continuous operator on the grid uniformly.

Since the Douglas scheme is inapplicable at r = 0, a standard Backwards Euler

scheme,

1 -A --- 2 k W 2Q0+i + Ax(kfo),+,, (5.39)

is used to discretize L for the first step in x, which can be shown to be unconditionally

stable as well.

Having made a choice on the particular form of the operator L, the condition that

II J(x) 11p< 1 for the surface system, must be determined explicitly, so that convergence

is established for the sand ridge problem. To estimate the size of J(x) we make use of

the super-system, Equation (5.24),

4,1+1 = L- 1 B(4,) (5.40)

4Il= "L-IB(&1I-l) (5.41)

4t- = etc. (5.42)

Thus,

etc. J(5.43)

• • J•-l)••t-](5.44)

etc. (5.45)
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with

J = L-'B'(4), (5.46)

where

o I 5e-ibx,+Ia~l -iK 5 z-i6xr+1a1 0

- i2K6e-ib: +1a1 0 0 0

iKse+ibx,+1al* 0 0 i K5 e+'bxI+4a•

0 0 i2K 6e+ixr+1a• 0

(5.47)

for the 1th iterate. In Equation (5.47), it is understood that the a's are only defined on

the grid.

From Equation (5.46), II J 1Ip< 1 if the size of L is greater than the size of B'. In the

L2 norm, the convergence condition is

II J 112=11 L- 1 B' 112<11 L-1 11211 B' 112!S 1, (5.48)

but

L 1 L 2•11_1112 /II L 112= 2/l1 L 112 (5.49)

Replacing (5.49) into (5.48) yields

11 J 112_• 2 11 B' 112 / II L 112:< 1. (5.50)

Working out the above inequality gives the condition for convergence in our particular

case:

2V(K + 4K6)1a, 12 + K1a 2 12/ L 112< 1. (5.51)

Since LLt = LtL, where Lt is the Hermitian matrix of L, then

L 112= /p(LL) = 4r4maxl,, IA. 1, (5.52)
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or using Eq.(5.33),

V(K3 + 4K2)1a, 12 + K21 a212/(3 + 4p + 2Axkf) < 1. (5.53)

where the Lo in y is used to estimate the size of the vectors, i.e., a, = maxl<5 <n as,

i=1,2. Hence, Equation (5.53) gives constraints on p, Ax, and aj, to be satisfied in order

to guarrantee convergence in the solution of our problem. Another constraint we impose

in the numerical implementation is to restrict A.x to be less than 27r/6, so as to minimize

the phase error. In Figure 5.3 and 5.4 the parametric plots of K 5 and K'6 are shown, and

are included to complete the picture of the relevant size of all the quantities involved in

Equation (5.53).

15

2
0

0 2 1.e uncv

0 4

0.6

Figure 5.3: Plot of K5/a versus the fundamental frequency wl, and 3.

It must be noted that owing to the nature of the nonlinearity of our particular prob-

lem. we had to rely on the super-system to arrive at a convergence criteria, but we do

not actually use it for the computation of the field variables. Note also that although
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Figure 5.4: Plot of Ks/a versus the fundamental frequency wi, and 3.

inverse matrices appear establishing the estimates of convergence, they are not actually

required in the computation of the field variables themselves.

5.3 Performance Evaluation of the Numerical Schemes

5.3.1 Evaluation of the Mass Transport Equation Scheme

For the Lax-Wendroff Scheme, we ran a few test runs in order to confirm qualitatively

the scheme's stability, consistency and accuracy, checking for agreement with the well

established theoretical results. Of more concern to us was the issue of damping and of

phase drift. In order to quantify the scheme's dissipation and drift we used a model

problem for which an exact solution is known.

The model problem used was

hT + khh, = 0, x E W",T > 0 (5.54)
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with initial condition

h(x,0) 1 + Ex O < x <1 (5.55)

1+ El X>l1

in which 0 < k < 1, and E < 1. The exact solution of Equations (5.54) and (5.55) is

1 x<kT

h(xT)= 1+ . x-kT kT < x < I + k(1 + El)T (5.56)

1 + 6l otherwise.

We tried different values of k - it scales the time step-, but we report our results for

k = 0.1, and for such a case convergence is possible if hAT/zx < 10 in the time interval

0 to T. Since Equation (5.54) conserves a quantity proportional to hP, we compared the

computed value hA against the theoretical value h as a function of a = kA.T/Ax and as

a function of time T to get an idea of the scheme's dissipation. Specifically, we monitored

the constant of motion

M/A 2 3 3

c(T,a) = 1 h'A(T, rAx)rAx + -kT[h (T,M)- h (T, 0)], (5.57)
r=0

where M is a very large value in xr. For an estimation of the phase drift, we computed

e2(a, T)= hA(T, x,) - h(T, X,)1 2/ZE Ih(T, Xr)1 2. (5.58)
T r

Figure 5.5 and 5.6 show parametric plots of c and e2 respectively.

5.3.2 Performance of the Runge-Kutta Scheme

The accuracy and dissipation of the explicit fourth-order Runge-Kutta was investigated.

The domain was 128 units in extent, or roughly 10 interaction lengths. To measure

the dissipation, we monitored the energy, given by Equation (4.62). This quantity was

conserved by all trials to within 2% for all reasonable grid sizes.
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Figure 5.5: Dissipation as a function of a and T with k = 0.1 for the Lax-Wendroff

Scheme. From top to bottom, a = 0.4, 0.2, 0.1, 0.05 respectively.

To estimate the accuracy and error of the scheme we compared the outcome of the

numerical solution to the exact solution (4.72) using the following measures:

max{E, I X(rAx) - X'(xr)I}

max{Z, I X'(rA) )II

1 I x(rx) - X'(X,)
E, I X'(-Ax) I

1 [E I-x(r/x) -X '(xr)1}2]1/2 (5.59)12[E,. I X'(rAx) 12]1/2

where X is the calculated value of a., and X' the exact value at the grid location. The

exact solution X', was computed using the algorithm given in [67], p189. The error as

a function of grid size is plotted in Figure 5.7, from which one can conclude that the
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Figure 5.6: Phase drift for the Lax-Wendroff scheme as a function of a and T with

k = 0.1. From top to bottom, a = 0.4, 0.2, 0.1, 0.05 respectively.

scheme is in fact fourth order accurate and consistent, i.e. the error drops more or less by

a factor of 24 every time the grid size is halved. For the accuracy and dissipation trials

A= 0.5, A 2 = 0, in Equation (5.9), a flat bottom and parameters a = 0.3, /3 = 0.1,

,= 0.5, were used. Roughly, 10 interaction lengths was the extent of the domain.

5.3.3 Fixed Point Method Performance and Evaluation

Since we do not have an exact solution to the three-dimensional system we sought to

discern the accuracy of the Fixed Point Method (FPM) using local analysis. Let A be

the size in x or y of each grid element-as mentioned previously, the grid size is uniform

in the domain. A comparison of the computed solution at a particular point, using A.
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Figure 5.7: Error as a function of grid size for the Runge-Kutta method. I,: .........

12: - -------- :

and a solution with grid size A/2 yields

I XA - X)A/21= k- = CO'[(A/2)P]. (5.60)

Halving the grid size again

I XI/2 - XA/41 = k2 = CO[(A/4)P]. (5.61)

Thus, using Equation (5.60) and Equation (5.61) we can solve for p to get an estimate

of the order of accuracy of the scheme:

log k, - log k2  (5.62)
log2
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Using the same parameters and boundary conditions as those used in connection with

the Runge-Kutta scheme, and a domain with length of 128 and span of 32. we found that

the Fixed Point Method - ids an average value of p = 1.8. with a standard deviation of

0.5. Values of both fiel., quantities were used, and they were taken from various points

in the domain.

We did not perform a systematic study of the convergence of the method. We ob-

served, however, that the computed values tended to converge as the grid size was re-

fined. Since comparisons of the computed solutions with ant exact expresion for the

three-dimensional case were not possible, we compared the cross-sectional values of an

effectively two-dimensional solution computed using FPM along the whole length in x

and midway in the span-wise direction y, with a solution computed using the Runge-

Kutta Method with a very fine grid spacing. A measure of the error is given by the

1ý(Az AY) - max{Zr I X(rAx, mid)- %'(x,)}
max{ZEr I '(rAx) I}

1(AXAy) - Er I i((rAx,mid) - X'(x,)I
Z, I x'(rA-x)

12(A,- Ay) = [E x(rAx. mid) - k'(xr)I} 2 ]1 /2  (5.63)
[ZE, I ('(rAx) 121]1/2

norms, where A represents the solution obtained using FPM and X' the solution computed

with the Runge-Kutta scheme.

For the case Ax = Ay, the result is shown in Figure 5.8. The same result is obtained

when we fix Ay = 0.25, and we vary Ax. On the other hand, when Ax = 0.25 is fixed

and A• is varied, very little sensitivity in the norms is obtained. In this last case, the

11 ;z 4.4 x 10-:1, 1I ; 4.4 x 10-3 . and It ; 4.4 x 10-' for all sizes of the grid in the y

direction that we tried '.

The rate at which the iteration converges in FPM as a function of the grid size was

3Note that there is no y dependence in the solution for this particular trial.
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Figure 5.8: Error as a function of grid size, with zAx = Ay. I,:- .. ,1: .......... ,

12:

also investigated. With a = 0.3, i = 0.08, w, = 0.5, and boundary conditions A, = 0.5

and A-2 = 0.1, and a flat bed, we monitored the iteration discrepancy at a particular

value of x in a fairly large domain. As expected. we found that the number of iterations

required to meet a certain iteration tolerance decreases as the grid was refined. Figure

5.9 shows how the quantity

n

loglo[max{-E I o+l(x, sy) - 01(x, siy)!}] (5.64)
s=0

drops after each iteration I for a number of different grid sizes. It is evident from the

graphs that a finite and small number of iterations are required to reach adequate error

tolerances using reasonably-sized grids.
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We examined the iteration convergence at the first step iii x as well. Recall that for

the first step a Backwards Euler scheme was used to discretize the linear operator instead

of the Douglas scheme. We found that the number of iterations was roughly double tile

number required elsewhere in the domain, where the Douglas scheme is used.

-2.00

-2.51

-3.03 "

-3.54 "" ""

(-44.05 " \""

508 •- - "

-5.59 "\ -

-6 10 ., "" --

-6.62

-7 13

0 1 23

iteration

Figure 5.9: Iteration discrepancy as a function of grid spacing. The number of iterations

drops as A= 4, 2, 1, 0.5 respectively.

Before we examine the model's speed and storage requirements, we shall present

an overview of the implementation of the surface equations using Newton's Iterative

Method, the point being that a comparison of the standard approach with FPM enables

us to make specific claims regarding the resource economy of the Fixed Point Method.

In the most straightforward application of Newton's Method we either use the super-

system, or separate the regular system into real and imaginary parts. We shall opt for
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the second alternative. Let

a, = u + iv

a2  = w + iz (5.65)

and use some suitable discretization. such as the Douglas or Backwards Euler scheme.

say. Let

F = (ff, 2, f3, f4) = 0 
(5.66)

represent the four resulting equations--here we have placed the nonlinear terms of Equa-

tion (5.11) on the left hand side of the equals sign-for the values of the field variables

at level r + 1. If a second order implicit discretization of the operator 49Y is used, such

as would be the case if the Douglas or Backward Euler schemes were implemented, the

vector F has the following dependence:

F = F(x,+1 ), (5.67)

with

Xr-+ -= (us- 1 , US, uS+ ; VS- 1 , V, Vs+ ; 7s- l, WS. ws+ l zs- 1, zs, Zs+1)r+l. (5.68)

Put

x'+1 = X, + 6XI (5.69)

where

Xt = (l'-, Us, UL+1;+VS. -. VsV+I; WS-j , W"s Wa+l; Z'-1 ,Z,ZS+l)I (5.70)

is the IV iteration to the approximation X of the exact solution x which is being sought,

and

6XI = (e'3,S yS,,) (5.71)
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Expand F about X' to linear terms.

F(x,+1 ) ; F(X1 ) + J(X'b-X'. (5.72)

The resulting linear system for the unknown ýector tX1 is to be ,olved. Let X'+=

X1 + bX' and iterate until

Iaxi<.<, 11 6X' jj!_ ((f(_1x.Ay)) (5.73)

where O(f(Ax. Ay)) is the order of accuracy of the discretization. As a first guess. we

set X0 = X'.

The linear system resulting from an implicit scheme, which needs to be solved and

recomputed after each iteration, has the following structure:

(A,, Ri,C,. Di]j.X' = [Pi]. i = 1,4 (5.74)

where for each i, one of the matrices in A through D is tri-diagonal, and the other three

are diagonal. Hence, the full system

Mx = b (5.75)

is 4n x 4n, and while sparse, it has a large bandwidth.

If, on the other hand. an explicit scheme was used, the matrix to be computed and

solved for each iteration would have been 4 X 4 in size and full. In such a case it was found

that the accuracy is only first order in x. and the grid spacing must be impracticably

small.

In order to compare the Fixed Point and the Newton schemes insofar as economy of

resources, we need to present details of the solution of the matrix problem in Equation

(5.75). A way to efficiently solve Equation (5.75), which by no means is implied to be

the optimum way, is to use a pre-conditioning matrix. See [68]. p527.
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For each iteration, we need to solve Equation (5.75), which can be recast as

Mx = b

in which

ft = C- 1 MC-1

R = Cx

b = C-'b. (5.76)

where C is a pre-conditioning matrix such that

SII C-'M jj---1 M 11, for convergence,

• The condition number n(C-IM) g K(M), where n(M) =H M M-/II M1-II,

• C is easily invertible,

* C optimally has small storage requirements.

The iterative matrix solution process itself is thus

x -+x = x' + a(C- b - C-'Mx'). (5-77)

The two goals, which can be in many instances incompatible, are high speed, measured

in number of computations, and low storage requirements. In what follows, we shall

compromise on storage economy for the sake of speed, i.e. suppose the computational

domain, which is always fairly large, is not too large. A good choice for C, since M is

strongly diagonally dominant in our problem. is to use the symmetric positive definite

tri-diagonal part of M. In order to achieve efficiency, the key is to juditiously carry out

the multiplies of Equation (5.77), so that operations are performed on vectors as soon

as possible, rather than matrices. For example, after computing C 1 , which incidentally
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will be a full matrix but that needs to be computed only once for each x,., we find

Mx1 = q, a vector; next. compute C-'q, another vector, and so on.

The operation count, for the Newton Method can be estimated as follows: for each

value of x,, we need to solve iterably for the 1 th value of 6X, and for each iXI we need

to iterably solve Equation (5.77). First, since M is a 4n x 4n matrix, we require at

most O(n 2 ) operations to find C-1 . This calculation needs to be done only once for the

solution of Equation (5.77) since we use the same C-1 until the iteration of Equation

(5.77) converges, for each v, we have O(n 2 ) operations. This number of operations is

in turn performed v times to find the (v + 1)th vector. The estimate for the number

of iterates needed to solve for x"+1 depends on the specific form of M. However, we

guess that the number of iterations required is perhaps as good as a conjugate gradient

method, which is typically of O(n). In addition, we need to iterate I times to get the

1 + 1 iterate of 6X'. An estimate of this number is hard to estimate, but we expect that

the Newton converges quadratically, whereas the Fixed Point Method, as we showed

previously, convergeb linearly. Finally, we require this whole process be performed at all

values of x, m times. Hence, all told, we have m x v x l x (O(n 2) + O(n)) operations, and

if we suppose v = O(n), we conclude that the total count is approximately m x I x O(n 3).

An estimate for the operation count for the FPM is as follows. Equation (5.16) leads

to the problem

L(p = b (5.78)

for the unknown 4, where L is a 2n x 2n tri-diagonal matrix, m times to cover all values

of x in the domain. The efficient way to solve Equation (5.78) is to decompose the

problem in two steps: let L = 14'U, where W is a lower triangular matrix and.U and

upper triangular matrix. Then, solve

Wg = b (5.79)
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is solved for g, followed by

Uo = g. (5.80)

to finally obtain o. The total operation count for the solution of Equations(5.79) and

(5.80) is (Sn - 4) multiplies and (3n - 3) adds. All told. O(16n) operations. In turn,

this process is performed 1 times to compute the (I + 1)th iterate, and finally m times

to cover all values of x. The total is m x I x O(n). Thus, the operation count ratio for

these two methods is O(v'/ x n2 ), having assumed that the Newton method converges

quadratically in the iteration process. Hence. the Fixed Point Method is considerably

faster.

We can also compare storage requirements. For FPM. we need to store the old and

the new vector at each x, and another vector for the iteration process, hence we store 6n

values-note that for our problem each entry in the vector is of size 2n. In addition. we

need to store all the entries of a tri-diagonal matrix of size 2n x 2n, or roughly 6n values. 4

The total is thus 12n, or O(n) values. For the Newton Method, we have 12n values which

constitute the old and new vector elements plus a storage vector for the iteration plus

roughly 24n for the matrix M entries, with an additional n2 for the pre-conditioning

matrix. The total is O(n 2 ). The ratio of storage requirements of the two methods is

O(n).

The FPM, as we hope we have been able to show, has many attractive features.

Note that its economy of resources hinges upon the simplicity of the matrix that the

discretization generated. If higher order accuracy is required, the matrix will probably

be more complicated than the simple tri-diagonal matrix that was used in this study,

requiring greater computational resources. A somewhat unavoidable problem with the

4 In fact, we could be even more economical and use multipliers in the entries of L, so that only one
half of the tri-diagonal matrix entries need to be stored.
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FPM is that the method has noticeable dissipation. As we shall bhow. however, the

dissipation can be made tolerable at the expense of greater computational resources. We

do not know with certainty the cause for the dissipation and further study is required,

perhaps by applying this scheme on a nonlinear equation for which a great deal more is

known about its behavior and its solution.

To illustrate the degree of dissipation in the surface system FPM implementation we

used the same parameters and domain that was used in connection with the iteration

issue, and we fixed the iteration tolerance at 10-6. Two types of trials were carried out,

both were carried out using a flat bottom. In the three-dimensional trial we assumed the

boundary conditions were A1 = 0.5 + O.Oly, and A 2 = 0.1 + 0.01y, and monitored the

conserved quantity, Equation (4.26), along the length in the x direction, midway in the

span-wise direction. The derivatives that appear in Equation (4.26) were second-order

center-differenced. In the two-dimensional trial, we set A, = 0.5, and A 2 = 0.1. and

monitored the conserved quantity. Equation (4.62). along the same ray. The outcome of

both trials was qualitatively similar: the computed conserved quantity oscillated with

a period equal to the interaction length. The difference between the peak value and

the minimum value increased as the grid size was made larger. In addition, dissipation.

i.e. the drop of the peak value as a function of position x increased as the grid size

was made larger, and as a result, the resulting local interaction length grew since the

amplitude of the modes were attenuated. While we were unable to find the cause for such

an outcome, we do know that it is not related to the discretization of the O• operator or

to boundary effects, since the problem also arises in the two-dimensional trial, which has

no y dependence. We also tried changing the iteration discrepancy tolerance and saw no

correlation between the value of this parameter and the dissipation. We did find, however,

that the dissipation and osci]i-tion of the conserved quantities can be made negligible by
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Grid Size A Fluctuation

4.00 0.1002

2.00 0.0627

1.00 0.0168

0.50 0.0050

0.25 0.0014

Table 5.1: Energy fluctuation vs. grid size. Equilateral grid case.

making the grid size small. We also found that the effect is much more pronounced when

A 2 = 0 exactly, which yields solutions with very sharp minimas in the field variables.

Table 5.1 shows the difference between succesive maxima and minima for the second trial

as a function of grid size, with Ax = Ay. We also report the outcome of fixing Ax = 0.25

and varying Ay, in Table 5.2, and the opposite settings are illustrated in Table 5.3. The

two-dimensional trials for Ax = 0.25 and Ay = 4 showed significant discrepancies when

compared to the Runge-Kutta calculation, and the energy for this case oscillated in a

somewhat irregular pattern. While it is expected that any discretization of the surface

system will have inherent dissipation due to truncation, especially manifesting itself for

large grid sizes, it is not at all obvious at this stage of the research that the root cause

is truncation rather than some other cause.

To conclude this section, we report the wall-clock times for three runs of the surface

equations, as discretized using the Fixed Point Method. The code was written in Fortran

77-because of issues related to code portability-in a straight-forward manner, except

that recursion was used in the iteration procedure. For the size of these runs, the use of

recursion was probably marginally slower than opting for repeated subroutine calls. No
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Grid Size Ay Fluctuation

4.00 0.0018

2.00 0.0013

1.00 0.0013

0.50 0.0012

0.25 0.0014

Table 5.2: Energy fluctuation vs. Ay. Ax = 0.25 fixed.

Grid Size Ax Fluctuation

4.00 0.1415

2.00 0.0628

1.00 0.0198

0.50 0.0049

0.25 0.0014

Table 5.3: Energy fluctuation vs. Ax. Ay = 0.25 fixed.
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Machine A= 1,(50x50) A =0.5.(100x 100) A =0.25,(200x200)

Sun Sparc SLC 7.43 25.42 78.8

Sun Sparc 2 2.29 7.81 23.13

Ardent Titan 2X P1 3.9 13.9 44.81

Table 5.4: Wall-clock times in seconds vs. grid size (number of grid points per domain)

for the computation of the surface system over the whole domain using the Fixed Point

Method.

Machine A= 1. (50 x 50) A = 0.5, (100 x 100) A = 0.25. (200 x 200)

Sun Sparc SLC 0.16 0.25 0.50

Sun Sparc 2 0.06 0.08 0.15

Ardent Titan 2X P1 0.08 0.13 0.29

Table 5.5: Wall-clock times in seconds for the computation of the surface system for all

values of y at a particular x using the Fixed Point Method.

machine optimization, or floating point accelerators were utilized.' The time trials were

carried out with an initial bottom configuration f = 0.01x. All other parameters and

physical quantities were the same as those used previously. The domain was a square

with 50 units to its side. Two times are reported, the first one, in Table 5.4, corresponds

to the total time required to find the field variables everywhere in the domain, and

a second one, given in Table 5.5. is the time required to compute all values in the y

direction, for a particular x.

SThe Titan's vectorizability was not exploited either. Otherwise, its reported performance would not

compare so unfavorably.



Chapter 6

Qualitative Features of the
Solutions to the Full Model

The main qualitative features of the full model are presented in this chapter, using

examples computed numerically with the Fixed Point Method. The main points of the

chapter are: To present the effects of different initial bottom configurations and boundary

conditions on the surface and on the eventual bottom topography after the passage of

many surface waves; and to show that when the slopes of the ocean bottom are very

mild and the back-wash negligible, the reflected wave plays a relatively minor role in

determining the shape of the ocean surface and therefore of the sand-ridge topography.

6.1 General Behavior of the Solutions

To better discern the effects of different bottom topographies on the burface waves and

on the eventual bottom topography after the passage of many waves, attention will now

be given to the case in which the initial bottom configurations are strictly x-dependent

and the boundary conditions are constant. Briefly, in this case, a larger number of bars

form when the gradient is slight. the distance separating the bars increases seaward for

the positively sloped case, and initial bottom discontinuities in the x direction tend get

"smoothed out" after the passage of many waves.
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The modes for waves that are traveling normal to the shore over topography described

as f = 0.006x are displayed in Figure 6.1. Figure 6.2 shows the eventual topography

of a bottom which was initially the sloped but featureless profile of the last example.

Superimposed, but not drawn to scale. is the actual ocean surface, composed exclusively

of an incident wave field pictured at 7' = 0. Figure 6.3 shows the eventual topography

of a bottom which initially had a step in its profile. Note the smoothing effect due to

the passage of many waves. All of these figures had u = 0.1. = 0.2, 3 = 0.08, ,; = 1.8.

For the same range of parameters. Figure 6.4 shows the effect on the surface and on the

eventual bottom. of an initial topography that is approximately tuned to the interaction

length of the surface waves.

2.0

; \

1.6 i

12

0.8

0.4

00
0.0 40.0 80.0 120.0 160.0 200.0

position x

Figure 6.1: a, and a2 , for f(x,y) = 0.006x. a,(. = 0) = 0.5, a 2 (X = 0) = 0.01

A bottom which initially had gradients in the y direction bends the water waves
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Figure 6.2: Ocean surface at T = 0, and below, bottom topography at T = 0 and

T = 100AT. Not drawn to scale.

affecting the eventual bottom topography by producing a series of bars with refractive

features. Consider, for example, the case in which the initial bottom topography is

f(x, y) = 1.0y, with all other parameters as before. except w, = 1.2. Figure 6.5 shows

a 2 at T = 0 and Figure 6.6 shows the refracting bottom at T = 400AT. A striking way

in which refraction takes place can be seen in the case for which the boundary conditions

at x = 0 are y dependent. The case for which f(x, y) = 0 at T = 0 and the boundary

conditions are A 1 = 0.5 + 0.01y and A 2 = 0.1 + 0.01y, corresponding to an incoming

gravity wave that has slightly higher amplitude at one end than at the other, is shown

in Figures 6.7, 6.8 for a 2(T = 0) and f(T = 400AT), respectively.

Interesting configurations are achieved when the above-mentioned effects are com-
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1.4

-0.1

0.0 20A0 40.0 60.0 80.0 100.0
shoreward position

Figure 6.3: The fate of the topography which initially contained a step, shown at three

different times.

bined. Figure 6.9 illustrates the outcome, after T = 400AT , on a bottom topography for

which A, = 0.5 - 0.01y, A 2 = 0.1 - 0.01y, and the bottom at T = 0 was f(x, y) = 0.01y.

The eventual fate of a bottom which initially was smooth but sloped in the longshore

direction is illustrated in Figure 6.10. The boundary conditions in this example were

A1 = 0.5, A2 = 0.1, the initial bottom is described in the figure. Of note is the apparent

growth. and motion of the sand ridges in the shoreward direction, particularly where the

water column is deepest.
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Figure 6.4: Effect of a tuned bottom, f = 0.5 sin(O.412x) at T = 0, on the eventual

topography and ocean surface: Light solid line. Bottom at T = 100AT: Dark solid line.

6.2 Contribution of the Reflected Component to the Sur-
face Waves

Shown in Figure 6.11 is the cross-section of mode a,(x, y), and in Figure(6.12) a com-

parison of the eventual bottom with and without contributions from the reflected field.

Both figures were computed using Equation (4.1), with A1 = 0.5, A 2 = 0.01, B 1 = 0.2,

and 82 = 0.; c = 0.2, a = 0.1, 3 = 0.08. The bottom was f(z,y) = 0.006x at T = 0.

The dumain was 200 units long.

As was discussed in chapter 2, the reflected and incident fields are completely decou-

pled, owing to the assumptions made concerning the bottom topography. The deforma-

tions on the bottom topography due to the reflected component are entirely determined
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Figure 6.5: Refraction on the surface modes due to the bottom topography. Shown at

T=0.

by the amount of energy in the boundary conditions. Hence, it is necessary to include

the reflected component when the sea-going wave backwash is not negligible.

If the spatial scales of variation in the bottom topography in the shoreward direction

are of the same order as those of the surface waves, then scattering plays an important

role in the energetics of these surface waves; hence the reflected component must be

included even if the backwash is negligible. The model for the surface waves, in this

case, is given by Equation (2.75).
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6.3 Periodic Solutions to the Surface System

To give an idea of the rich structure of the surface system, Equpu•., (4.14) is solved

in the following examples using periodic boundary conditions in y. The parameter 6

is considered independent of frequency. The following graphs were generated using the

Fixed Point Method, in which the linear operator is discretized using the Douglas Scheme.

The discretization yields a tri-diagonal matrix problem, with additional non-zero constant

entries in the upper right-hand corner and the lower left-hand corner. This type of matrix

is known as a "Jacobi matrix", and shows up, for example, in the solution to the Toda

lattice problem with periodic boundary conditions. In the figures, two periods in y

are plotted in tandem, the calculation being performed on only one of the two periods.

The domain has M = 240 and N = 150, and the the fundamental frequency used was

w, = 1.2. The parameters were a = 0.1 and 3 = 0,18. The solution to the case with

boundary conditions A 1 = 0.5+0.1 sin( 3 ry) and A 2 = 0 is illustrated in Figure 6.14. For

the same parameters, but with the boundary condition A 1 = 0.1 sin( 3ry), the outcome

is shown in Figure 6.15. Comparison of the last case to the case in which b = 0 is given

by Figure 6.13.

An interesting pattern arises in the evolution of a case with quasi-periodic boundary

conditions; A1 = 0.1[sin(k3ry)+sin( ' ry)] and A 2 = 0. The outcome is Figure 6.16, with

the same parameter values as in the previous figure, except that 6 $ 0. The outcome

shown in Figure(6.16) is obtained for the boundary conditions A 1 = 0.1(sin(2-) +

sin(s_) and A2 = 0 (i.e., quasi-periodic), and 6 $ 0. The numerical solution of this last

example suggests that solutions to the surface system are stable and periodic.
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Figure 6.6: Refraction due to initial bottom configuration. Bottom at T = 400AT.
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Figure 6.7: Refraction due to boundary conditions. a2 at T = 0.
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Figure 6.8: Refraction due to boundary conditions. Bottom at T = 400AT.
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Figure 6.9: Refraction due to boundary conditions and initial bottom ccnfiguration.

Bottom at T = 400AT.
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Figure 6.11: Profile of a, and bt, for f(x, y) = 0.006x. A, = 0.5, BS = 0.2.
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Figure 6.12: Effect of a bi-directional surface wave field on the eventual bottom configu-

ration. Initially, f (x, y, 0) = 0.006x. The dark line is the bottom resulting from a strictly

shoreward-directed wave.
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Figure 6.13: u(x,y) for boundary conditions A1 = 0.1 sin( tory), A2 = 0, and detuning

parameter 6 = 0.

for

Figure 6.14: u(x. y) for .A, 0.5 + 0.1 sin(!-7ry), A2 = 0, and 6 94 0.
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Figure 6.15: u(z, y) for A,1 = 0.1 sin( 37ry), A 2 = 0. and 6 5 0.
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Figure 6.16: Solution for quasi-periodic boundary conditions: A, = 0.1[sin(3ry) +

sin( ,7ry)], and A2 = 0. 6 i 0.



Chapter 7

Conclusions and Future Research
Plans

This study detailed the construction and implementation of a model for the formation

and evolution of three-dimensional sedimentary structures on the continental shelf, based

on the energetic interactions of weakly nonlinear long waves with the shelf's sedimentary

topography. This chapter turns its attention to the larger picture. discussing the main

conjecture of the study, as well as the methodological aspects pertinent to future research.

The main conjecture of this study is that a significant, but by no means exclusive,

agent for the formation and evolution of longshore sand ridges on regions of the conti-

nental shelf that are sufficiently removed from the shoaling area is the repeated action

of the second-order oscillatory drift velocity that results from the passage of weakly non-

linear shallow-water internal or surficial waves. The basis for the conjecture rests on

(1) the close correlation between the inter-bar spacing and the length in which energetic

exchanges among the most powerful modes of the shallow water waves takes place; (2)

the close correlation between the evolutionary time scales for the bars and the time re-

quired for highly coherent nonlinear dispersive wave trains to impart sufficient energy

into a boundary layer to significantly transform a sediment-laden bottom topography;

(3) the fact that longshore sand ridges are found in areas in which no wave breaking
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occurs and/or in which the reflected field is absent or negligible; (4) the claim that sand

ridges with highly organized characteristics may be found in regions in which coherent

weakly nonlinear dispersive waves exist; and (5) that the energy of these waves is of the

correct magnitude to significantly affect the topography of a sediment-laden bottom.

At present, neither the dynamics of sedimentation nor those of water waves are fully

understood. The model presented here represents the conjecture based on current un-

derstanding of both processes. If the conjecture is correct, the model will improve in

predictive power as understanding of sedimentation and wave dynamics improve. How-

ever, the more important functions played by the model are that its development viels

clues to ways in which the conjecture itself may be refined and tested, as well as providing

conceptual spin-offs (such as the modal surface system that appears in this study) which

are interesting independent of the sedimentation problem at hand.

The model in its inception was two-dimensional. Based on encouraging comparisons

with actual field data, the three-dimensional version was developed and made the subject

of this study. Briefly described, the present model couples a mass transport equation,

which controls the history of the bottom topography. to a mathematical equation, which

describes the evolution of the most energetic modes of surface or internal weakly nonlinear

dispersive shallow water waves with weak span-wise spatial dependence. In order to solve

the coupled system one must rely on the discrepant time scales of the bottom evolution

and of the water waves to effectively decouple their interaction, making a solution by

iteration possible.

In the near future the modal representation of the water waves will be replaced

with a full Boussinesq system. and the effects of oceanic currents will be included in the

model. Bona and Saut [691 are presently studying the different versions of the Boussinesq

system in order to determine, among other things, which variant best models oceanic
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waves, and which is well-posed as a boundary value problem. Additionally, a number

of issues brought up in this study need to be pursued to completion. These include

the search for stable bottom configurations as predicted by the model. completion of

the well-posedness theory and the Hamiltonian structure for the surface system, and

development of a stability result for the iterative procedure that was used to solve the

coupled surface/mass transport equations.

The sensible way to test the conjecture and the model is, of course, to examine

oceanic field data. Comparisons with oceanic field data can assess the predictive pow-

ers of the model: laboratory experiments cannot, however, as they do not scale well.

The task of making field observations, particularly in the three-dimensional case, is a

tedious, expensive, and sometimes difficult enterprise. While researchers at the INRS

at the University of Quebec, headed by Prof. Boczar-Karakiewicz, were able to make

some comparisons between the two-dimensional version of the model and sand ridge data

[2], finding that the model's predictions agreed qualitatively with the height. spacing,

and evolution trends of the actual bars, they have not yet taken on the task of making

comparisons in the three-dimensional case. As of this writing, the Quebec team is re-

ducing field data from the continental shelf, gathered from the ocean floor neighboring

Newfoundland and Eastern Australia.

There are, however, several aspects of the conjecture which can be tested in the

laboratory as well as in the field. The drift velocity created by shallow water waves of

the type identified here as responsible for the formation of longshore sand ridges must

be observed and studied in a laboratory setting. Comparisons between the laboratory

experiments and the drift velocity measurements in sand ridge fields could prove fruitful.

Additionally, it should be possible to correlate the drift velocity to the shallow water

waves in question both in the laboratory and in the ocean.
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Field observations are needed to (1) determine the importance of both the reflected

wave field and oceanic currents in determining the nature of the drift velocity in sand

ridge areas; (2) correlate in some way the beginning and end of ridge fields and the

physical location at which water waves are created and eventually destroyed; (3) track

the relevant wave spectra in order to see evidence of the predicted pattern in energetic

interaction lengths and its correlation to features of the bottom topography; and (4)

determine what sort of sand ridge configurations are stable and/or non-migratory.

Laboratory observations are required to determine how well the various Boussinesq

systems model the weakly nonlinear shallow water waves and to confirm the existence of

recurrence-like solutions over long propagation lengths. Additionally, more experiments

aimed at furthering our understanding of the motion of sediment in the boundary layer

are needed.

Computational experiments are currently being planned, aimed at exploring the ita

ture of recurrence-like solutions in nonlinear dispersive equations. such as the Boussinesq

equation; other experiments will explore the stability and interdependence of the trun-

cated modal solutions to these equations.

In conclusion, this study has produced a wealth of interesting and fundamental ques-

tions. While comparisons between field data and the two-dimensional model are very

encouraging and this three-dimensional extention should therefore find applicability in

the real world environment, any topographical chart of the continental shelf provides a

good reminder of the long path yet to travel toward a complete understanding and model

of the full problem. If this study has piqued the curiosity and compelled the reader to

take a closer look at sandbars, it will have succeeded.



Appendix A

Higher Order Theory

Considered here is the second order contributions to the proposed model. This section

is included as an appendix because of it's exploratory nature. The value of these cal-

culations resides in the possibility of discerning if any fundamentally new contributions

may arise from a careful inclusion of these higher order terms. The very tedious process

of generating the surface contributions at this order, and the daunting problem of for-

mulating the drift velocity, is a veritable project, even for a symbolic solver. The higher

order expressions were derived as ca-efully as possible, nevertheless, it is very possible

that algebraic errors were made.

The irrotational condition to this order is

a2 :u 2y-v 2x-vx = 0. (A.1)

and the continuity condition,

a2  12xxt - F2(r1o. Uo, vo, ih, Ul, vi. G; x,X, y,t), (A.2)
3

where G(X. y, T) = and 1
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F2  = -vI. + u2? - ul - - - Gulr _ 771UOX + 2 32 (nw~xt+G,)jxxt)
3 ~3

-uoIIlX - qOU~.x - Gyvo - Gxo- tvoqoy - Gv0 y - 70 VOY + 23
2
Go) (A.-3)

-uo17ox - Guox - lqouox + -2 + 3Gxo 4IGrxx
33-3 :3

Reiterating Equation (2.60).

where the linear operator is

L = Ott -49rx -3 X (A.5)

and the inhomogeneous term is

G2 (1 + /32att /3)qlyy + G(1 + 2,32 att /3)1ijj 1, + 2(t + 42 att1/3)yl.rx

(1 +0 Ott0/3)17oxx + G( 1 + 2,320tt /3)i7ojy + 2(1 + 29t/)7x

+Gx(1 + 4 32 .9tt/3) + 77o, + Gyijoy + 2I32 Gyy7ott/3 + 4!32 Gy7otyy/3 (A.6)

-(711 UO + 77oZ0l, ) + ( U1 UO). + ( uo)7,x - (uoIo)xt + G( U212).,x

+(0/2)yy + (v02/2)x, + (,qo/2)yy - (l7otvo)y.

Applying the compatibility condition, we get, after a substantial amount of algebra,

A1x + iefD 1E1 A1 - iaF1AI., - iatDISjfEL1(A'a2 +ajA 2) = Q(X~y,a1 ,a 2 )

A2-, + iEfD 2E2A2 - IoF2A2 yy + i2aD 2S2e +ix aiAl = 92(X,y,aj.a2).

(A.7)

for the equations of the modes. The constants on the left hand side are given by Equation
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(2.73), and the inhomogeneous terms are

--p Ia 1x yy -P 2 f (X, y) a 1 x- P3 a 1  P4 fz( X -y )caI + p5 fy,(x. y )ai

+P6 fy( X, y) a Iy + P7 f(X, y) a 1 + {P 8 a 2 a 1 x+ p a 2x a + P 10f (X, Y ) a'a 2

1 pi(la2 y -p 3 a%2 )y - P14(aja2y)y-

+P16 (ala, + 2aja~a2)
(A.8)

and

Q2 -Pl7a2xy~y - P18f(X, Y)a2. - plga2.. - p2fx(X, Y)a2 + P2 2 fyy(X, y)a2

+P23fy(X~ Y)a2y + 224 f(X. y)a 2yY +I {-P25a~a1 + P26 f(X, y)a 2 + P27(a2)

-P2 8 (a2)yy) + P29(aly )2 + P3o( ajyaj1 j+6

+p 2a*a + 2aia'a 2 ).

(A.9)

The coefficients appearing in the Q terms above are explicitly given below:

p, = 2FI

P2 = 2EDIFIE1/a

p13 = iFila (A.10)
A'

2 2

P24 = )2jj1- 03W

33

= 22

p6 = 4iDFDi -ki)W + -)I)1D/k

p9  = 4DIF Iw;2 (k 2 -ki )(W2 -u'I)PI"

P10 = 2iEF, DI (k2 -k, )2 [2D, Ej(k 2 - kj) -k 1 ]
W1



156

P2 4iaF1 F2D , k2(k2  - ki) _kk I

2D
P13 =4iaF 1 F2 Diw2/wI

P14 =4iaF 1 F2D~wl

P15 4ZckFIF2 D,(k 2 - k,) 2 1W,

P16 =aDj

P17 =2F2

P18 = 2ED2F2E2 /a

pig = 3iF2 /aIW2

P21 = r2D2F2( 1-43w

P22 = zi-E 2 w2D23
2 4

P23 = 4iEF2 D2 k2 + -03 2w12D2/k 2
3

P24 = 4iEFID1 Ei

P25 = i8W1 D2FIW2

P26 = 2iED 2 [2klE - 1Jk~/w 2

ka 2 F~1 1
P28 2

P29 = 2iaD2/W2

P30 = iaW 2D2/W 2k1 )2

P31 = atD 2. (A. 11)
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The drift velocity to second order in a is

(U2 ) = (U2) + Judt.Vuo) + (J'J u0,dt'*Vuod.Vu0)

+ ( uodt-Vul) + 2({t uodi}trHu-i• uodt). (A. 12)

which, after weak y dependence scaling is adopted, can be expressed in component form

as

U = (u 2 ) + (ft vodiuov) + (ft uldituo.) + (ft wtdiuo,,) + (f' uodiul,1) + (J` wodu 1l,)

{ft ft uodt'uo0 d[ + ft ft wodt'uondt}uo1 +

{ft ff uodt'wo~di + ft ft wodt'wodi}uo,+

1(ft uodt) 2 uo** + 1(f' wodt) 2 Uo,•)

V = (v2) + (ft vodivov) + (ft ujdivoo) + (ft wjdvo o) + (ft uodiviz) + (ft odir,)

(I{f f t uodt'uo.di + ft ft wodt'uond ro.r +

{ft ft uodt'woxdi + ft f t wodt'wo0,di}von+

'(ft uodi)2vo:.. + 1(ft wodi)2vo,•).

(A.13)

The longshore drift velocity was calculated for which the second order velocity in the

boundary layer, Equation (3.21), is needed. The calculation was carried out by isolating

the contributions at the first and second harmonics to the velocity. Once the velocity was

calculated, Equation (A.13) was computed explicitly. Fintily, U gets integrated over the

depth of the boundary layer since the density distribution for the sediment is assumed

constant. The resulting expression for the longshore inast, transport voiocity is

2 I

J=1 O' '

k 2{h' A. N;a CjPjIa* a -' j+ (.±.
+ W VI- w~, jP~aay]
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+ a a1C:C Leaa+ c.c. (A.14)

where M, N, P, L are complicated coefficients that depend on the frequency and wavenum-

ber of the waves, the boundary layer thickness, and the parameter 3. Finally, we add

the above contribution to the mass transport equation, which now looks like

dh(x~yT) KyT = [PIl. + a(P2. + vIY)]. (A.15)49T PO

An illustration of the contribution of the second order theory is shown below. Figure

A.1 shows the cross section of the higher order contributions to the surface wave field.

and Figure A.2 gives a comparison of the eventual bottom topography which is formed

by the action of the higher order drift velocity to the case in which no higher order

contributions are used. The bottom initially had a profile f(x) = 0.006, the frequency

was ol = 1.8. The parameters were set at a = 0.1, ,3 = 0.08, E = 0.2.

Figure A.1 and Figure A.2 display the higher order effects for the same problem and

parameters used to generate Figure 6.1 and Figure 6.2. Altiough the plots for the higher

order contributions have been produced with an exagerated vertical scale, it is not clear

whether in reality , these quantities do indeed eventually diverge.
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Figure A.I: Higher order contributions to the surface wave field at T = 0. The vertical

scale has been exagerated.The lower curve represents the bottom. Al: -. A2:-
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Figure A.2: Higher contributions to the bottom topography. The bottom was initially

f(x) = 0.006. Eventual ,bottom with and with no --------- higher order

contributions.



Appendix B

Slightly Interacting Resonant
Quartets

This appendix contains the expressions for the lowest order surface wave modal ampli-

tudes for the case of quartet interactions.

The presentation is limited to the incident wave field. The relation among the fre-

quency and wavenumbers, that w.j = j=kl, k2 = 2k, - 6. and k3 = 3k, - A is given by

the dispersion relation. The procedure is the same as the two mode case. Substituting

Equations(2.65) and (2.67), with j = 1.2, 3, into the compatibility condition, Equation

(2.71) yielas the following system:

al, + if fDi Eia - iaFial. + ioDlS2 u11f-' 6 'aia 2 + iMDIS 32 1eiAza~a3 = 0

a2, + iEfD 2 E2 a 2 - iaF 2 a 2yy + iaD 2S 2 C+'6'a1 + iaD 2 S3 12 e t•aia 3 = 0

a3, + iEfD3E3 a3 - iaF 3 a 3yy + iaD 3S 3e- iAala 2 = 0,

(B.1)
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to O(6/X). The constants are

D = / 2 (l-- L)

Ej =331-•

F , = /2k j (B.2)

S 3  = k2 +k1 {k2 + k1 + 3wj( + 2))

22=

S23  = 7,k +2.'S,1 -- 'f- - kj + Lq1(" + )

The boundary conditions are similar to Equation (4.2). except that there are three modes

rather than two that need to be pinned down at the boundary. Thus

a3 (O,y) = A., (B.3)

with j = 1,2.3. plus appropriate boundary conditions on the lateral sides of the domain.
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